Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
import json | |
import pandas as pd | |
import zipfile | |
import xml.etree.ElementTree as ET | |
from io import BytesIO | |
import openpyxl | |
from openai import OpenAI | |
import re | |
import logging | |
HF_API_KEY = os.getenv("HF_API_KEY") | |
# Configure logging to write to 'zaoju_logs.log' without using pickle | |
logging.basicConfig( | |
filename='extract_po_logs.log', | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
encoding='utf-8' | |
) | |
# Default Word XML namespace | |
DEFAULT_NS = {'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main'} | |
NS = None # Global variable to store the namespace | |
def get_namespace(root): | |
"""Extracts the primary namespace from the XML root element while keeping the default.""" | |
global NS | |
ns = root.tag.split('}')[0].strip('{') | |
NS = {'w': ns} if ns else DEFAULT_NS | |
return NS | |
# --- Helper Functions for DOCX Processing --- | |
def extract_text_from_cell(cell): | |
"""Extracts text from a Word table cell, preserving line breaks and reconstructing split words.""" | |
paragraphs = cell.findall('.//w:p', NS) | |
lines = [] | |
for paragraph in paragraphs: | |
# Get all text runs and concatenate their contents | |
text_runs = [t.text for t in paragraph.findall('.//w:t', NS) if t.text] | |
line = ''.join(text_runs).strip() # Merge split words properly | |
if line: # Add only non-empty lines | |
lines.append(line) | |
return lines # Return list of lines to preserve line breaks | |
def clean_spaces(text): | |
""" | |
Removes excessive spaces between Chinese characters while preserving spaces in English words. | |
""" | |
# Remove spaces **between** Chinese characters but keep English spaces | |
text = re.sub(r'([\u4e00-\u9fff])\s+([\u4e00-\u9fff])', r'\1\2', text) | |
return text.strip() | |
def extract_key_value_pairs(text, target_dict=None): | |
""" | |
Extracts multiple key-value pairs from a given text. | |
- First, split by more than 3 spaces (`\s{3,}`) **only if the next segment contains a `:`.** | |
- Then, process each segment by splitting at `:` to correctly assign keys and values. | |
""" | |
if target_dict is None: | |
target_dict = {} | |
text = text.replace(":", ":") # Normalize Chinese colons to English colons | |
# Step 1: Check if splitting by more than 3 spaces is necessary | |
segments = re.split(r'(\s{3,})', text) # Use raw string to prevent invalid escape sequence | |
# Step 2: Process each segment, ensuring we only split if the next part has a `:` | |
merged_segments = [] | |
temp_segment = "" | |
for segment in segments: | |
if ":" in segment: # If segment contains `:`, it's a valid split point | |
if temp_segment: | |
merged_segments.append(temp_segment.strip()) | |
temp_segment = "" | |
merged_segments.append(segment.strip()) | |
else: | |
temp_segment += " " + segment.strip() | |
if temp_segment: | |
merged_segments.append(temp_segment.strip()) | |
# Step 3: Extract key-value pairs correctly | |
for segment in merged_segments: | |
if ':' in segment: | |
key, value = segment.split(':', 1) # Only split at the first colon | |
key, value = key.strip(), value.strip() # Clean spaces | |
if key in target_dict: | |
target_dict[key] += "\n" + value # Append if key already exists | |
else: | |
target_dict[key] = value | |
return target_dict | |
# --- Table Processing Functions --- | |
def process_single_column_table(rows): | |
"""Processes a single-column table and returns the extracted lines as a list.""" | |
single_column_data = [] | |
for row in rows: | |
cells = row.findall('.//w:tc', NS) | |
if len(cells) == 1: | |
cell_lines = extract_text_from_cell(cells[0]) # Extract all lines from the cell | |
# Append each line directly to the list without splitting | |
single_column_data.extend(cell_lines) | |
return single_column_data # Return the list of extracted lines | |
def process_buyer_seller_table(rows): | |
"""Processes a two-column buyer-seller table into a structured dictionary using the first row as keys.""" | |
headers = [extract_text_from_cell(cell) for cell in rows[0].findall('.//w:tc', NS)] | |
if len(headers) != 2: | |
return None # Not a buyer-seller table | |
# determine role based on header text | |
def get_role(header_text, default_role): | |
header_text = header_text.lower() # Convert to lowercase | |
if '买方' in header_text or 'buyer' in header_text or '甲方' in header_text: | |
return 'buyer_info' | |
elif '卖方' in header_text or 'seller' in header_text or '乙方' in header_text: | |
return 'seller_info' | |
else: | |
return default_role # Default if no keyword is found | |
# Determine the keys for buyer and seller columns | |
buyer_key = get_role(headers[0][0], 'buyer_info') | |
seller_key = get_role(headers[1][0], 'seller_info') | |
# Initialize the dictionary using the determined keys | |
buyer_seller_data = { | |
buyer_key: {}, | |
seller_key: {} | |
} | |
for row in rows: | |
cells = row.findall('.//w:tc', NS) | |
if len(cells) == 2: | |
buyer_lines = extract_text_from_cell(cells[0]) | |
seller_lines = extract_text_from_cell(cells[1]) | |
for line in buyer_lines: | |
extract_key_value_pairs(line, buyer_seller_data[buyer_key]) | |
for line in seller_lines: | |
extract_key_value_pairs(line, buyer_seller_data[seller_key]) | |
return buyer_seller_data | |
def process_summary_table(rows): | |
"""Processes a two-column summary table where keys are extracted as dictionary keys.""" | |
extracted_data = [] | |
for row in rows: | |
cells = row.findall('.//w:tc', NS) | |
if len(cells) == 2: | |
key = " ".join(extract_text_from_cell(cells[0])) | |
value = " ".join(extract_text_from_cell(cells[1])) | |
extracted_data.append({key: value}) | |
return extracted_data | |
def extract_headers(first_row_cells): | |
"""Extracts unique column headers from the first row of a table.""" | |
headers = [] | |
header_count = {} | |
for cell in first_row_cells: | |
cell_text = " ".join(extract_text_from_cell(cell)) | |
grid_span = cell.find('.//w:gridSpan', NS) | |
col_span = int(grid_span.attrib.get(f'{{{NS["w"]}}}val', '1')) if grid_span is not None else 1 | |
for _ in range(col_span): | |
# Ensure header uniqueness by appending an index if repeated | |
if cell_text in header_count: | |
header_count[cell_text] += 1 | |
unique_header = f"{cell_text}_{header_count[cell_text]}" | |
else: | |
header_count[cell_text] = 1 | |
unique_header = cell_text | |
headers.append(unique_header if unique_header else f"Column_{len(headers) + 1}") | |
return headers | |
def process_long_table(rows): | |
"""Processes a standard table and correctly handles horizontally merged cells.""" | |
if not rows: | |
return [] # Avoid IndexError | |
headers = extract_headers(rows[0].findall('.//w:tc', NS)) | |
table_data = [] | |
vertical_merge_tracker = {} | |
for row in rows[1:]: | |
row_data = {} | |
cells = row.findall('.//w:tc', NS) | |
running_index = 0 | |
for cell in cells: | |
cell_text = " ".join(extract_text_from_cell(cell)) | |
# Consistent Namespace Handling for Horizontal Merge | |
grid_span = cell.find('.//w:gridSpan', NS) | |
grid_span_val = grid_span.attrib.get(f'{{{NS["w"]}}}val') if grid_span is not None else '1' | |
col_span = int(grid_span_val) | |
# Handle vertical merge | |
v_merge = cell.find('.//w:vMerge', NS) | |
if v_merge is not None: | |
v_merge_val = v_merge.attrib.get(f'{{{NS["w"]}}}val') | |
if v_merge_val == 'restart': | |
vertical_merge_tracker[running_index] = cell_text | |
else: | |
# Repeat the value from the previous row's merged cell | |
cell_text = vertical_merge_tracker.get(running_index, "") | |
# Repeat the value for horizontally merged cells | |
start_col = running_index | |
end_col = running_index + col_span | |
# Repeat the value for each spanned column | |
for col in range(start_col, end_col): | |
key = headers[col] if col < len(headers) else f"Column_{col+1}" | |
row_data[key] = cell_text | |
# Update the running index to the end of the merged cell | |
running_index = end_col | |
# Fill remaining columns with empty strings to maintain alignment | |
while running_index < len(headers): | |
row_data[headers[running_index]] = "" | |
running_index += 1 | |
table_data.append(row_data) | |
return table_data | |
def extract_tables(root): | |
"""Extracts tables from the DOCX document and returns structured data.""" | |
tables = root.findall('.//w:tbl', NS) | |
table_data = {} | |
table_paragraphs = set() | |
for table_index, table in enumerate(tables, start=1): | |
rows = table.findall('.//w:tr', NS) | |
if not rows: | |
continue # Skip empty tables | |
for paragraph in table.findall('.//w:p', NS): | |
table_paragraphs.add(paragraph) | |
first_row_cells = rows[0].findall('.//w:tc', NS) | |
num_columns = len(first_row_cells) | |
if num_columns == 1: | |
single_column_data = process_single_column_table(rows) | |
if single_column_data: | |
table_data[f"table_{table_index}_single_column"] = single_column_data | |
continue # Skip further processing for this table | |
summary_start_index = None | |
for i, row in enumerate(rows): | |
if len(row.findall('.//w:tc', NS)) == 2: | |
summary_start_index = i | |
break | |
long_table_data = [] | |
summary_data = [] | |
if summary_start_index is not None and summary_start_index > 0: | |
long_table_data = process_long_table(rows[:summary_start_index]) | |
elif summary_start_index is None: | |
long_table_data = process_long_table(rows) | |
if summary_start_index is not None: | |
is_buyer_seller_table = all(len(row.findall('.//w:tc', NS)) == 2 for row in rows) | |
if is_buyer_seller_table: | |
buyer_seller_data = process_buyer_seller_table(rows) | |
if buyer_seller_data: | |
table_data[f"table_{table_index}_buyer_seller"] = buyer_seller_data | |
else: | |
summary_data = process_summary_table(rows[summary_start_index:]) | |
if long_table_data: | |
table_data[f"long_table_{table_index}"] = long_table_data | |
if summary_data: | |
table_data[f"long_table_{table_index}_summary"] = summary_data | |
return table_data, table_paragraphs | |
# --- Non-Table Processing Functions --- | |
def extract_text_outside_tables(root, table_paragraphs): | |
"""Extracts text from paragraphs outside tables in the document.""" | |
extracted_text = [] | |
for paragraph in root.findall('.//w:p', NS): | |
if paragraph in table_paragraphs: | |
continue # Skip paragraphs inside tables | |
texts = [t.text.strip() for t in paragraph.findall('.//w:t', NS) if t.text] | |
line = clean_spaces(' '.join(texts).replace(':',':')) # Clean colons and spaces | |
if ':' in line: | |
extracted_text.append(line) | |
return extracted_text | |
# --- Main Extraction Functions --- | |
def extract_docx_as_xml(file_bytes, save_xml=False, xml_filename="document.xml"): | |
# Ensure file_bytes is at the start position | |
file_bytes.seek(0) | |
with zipfile.ZipFile(file_bytes, 'r') as docx: | |
with docx.open('word/document.xml') as xml_file: | |
xml_content = xml_file.read().decode('utf-8') | |
if save_xml: | |
with open(xml_filename, "w", encoding="utf-8") as f: | |
f.write(xml_content) | |
return xml_content | |
def xml_to_json(xml_content, save_json=False, json_filename="extracted_data.json"): | |
tree = ET.ElementTree(ET.fromstring(xml_content)) | |
root = tree.getroot() | |
table_data, table_paragraphs = extract_tables(root) | |
extracted_data = table_data | |
extracted_data["non_table_data"] = extract_text_outside_tables(root, table_paragraphs) | |
if save_json: | |
with open(json_filename, "w", encoding="utf-8") as f: | |
json.dump(extracted_data, f, ensure_ascii=False, indent=4) | |
return json.dumps(extracted_data, ensure_ascii=False, indent=4) | |
def deepseek_extract_contract_summary(json_data, save_json=False, json_filename="contract_summary.json"): | |
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON.""" | |
# Step 1: Convert JSON string to Python dictionary | |
contract_data = json.loads(json_data) | |
# Step 2: Remove keys that contain "long_table" | |
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" not in key} | |
# Step 3: Convert back to JSON string (if needed) | |
json_output = json.dumps(contract_data, ensure_ascii=False, indent=4) | |
prompt = """You are given a contract in JSON format. Extract the following information: | |
# Response Format | |
Return the extracted information as a structured JSON in the exact format shown below (Note: Do not repeat any keys, if unsure leave the value empty): | |
{ | |
"合同编号": | |
"接收人": (注意:不是买家必须是接收人,不是一个公司而是一个人) | |
"Recipient": | |
"接收地": (注意:不是交货地点是目的港,只写中文,英文写在 place of receipt) | |
"Place of receipt": (只写英文, 如果接收地/目的港/Port of destination 有英文可填在这里) | |
"供应商": | |
"币种": (主要用的货币,填英文缩写。GNF一般是为了方便而转换出来的, 除非只有GNF,GNF一般不是主要币种。) | |
"供货日期": (如果合同里有写才填,不要自己推理出日期,必须是一个日期,而不是天数) | |
} | |
Contract data in JSON format:""" + f""" | |
{json_output}""" | |
messages = [ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
# Deepseek R1 Distilled Qwen 2.5 14B -------------------------------- | |
client = OpenAI( | |
base_url="https://router.huggingface.co/novita", | |
api_key=HF_API_KEY, | |
) | |
completion = client.chat.completions.create( | |
model="deepseek/deepseek-r1-distill-qwen-14b", | |
messages=messages, | |
temperature=0.5, | |
) | |
# Deepseek V3 -------------------------------- | |
# client = OpenAI( | |
# base_url="https://router.huggingface.co/novita", | |
# api_key=HF_API_KEY, | |
# ) | |
# completion = client.chat.completions.create( | |
# model="deepseek/deepseek_v3", | |
# messages=messages, | |
# temperature=0.1, | |
# ) | |
# Qwen 2.5 7B -------------------------------- | |
# client = OpenAI( | |
# base_url="https://router.huggingface.co/together", | |
# api_key=HF_API_KEY, | |
# ) | |
# completion = client.chat.completions.create( | |
# model="Qwen/Qwen2.5-7B-Instruct-Turbo", | |
# messages=messages, | |
# ) | |
think_text = re.findall(r"<think>(.*?)</think>", completion.choices[0].message.content, flags=re.DOTALL) | |
if think_text: | |
print(f"Thought Process: {think_text}") | |
logging.info(f"Think text: {think_text}") | |
contract_summary = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL) # Remove think | |
contract_summary = re.sub(r"^```json\n|```$", "", contract_summary, flags=re.DOTALL) # Remove ``` | |
if save_json: | |
with open(json_filename, "w", encoding="utf-8") as f: | |
f.write(contract_summary) | |
return json.dumps(contract_summary, ensure_ascii=False, indent=4) | |
def deepseek_extract_price_list(json_data): | |
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON.""" | |
# Step 1: Convert JSON string to Python dictionary | |
contract_data = json.loads(json_data) | |
# Step 2: Remove keys that contain "long_table" | |
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" in key} | |
# Step 3: Convert back to JSON string (if needed) | |
json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4) | |
prompt = """You are given a price list in JSON format. Extract the following information in CSV format: | |
# Response Format | |
Return the extracted information as a CSV in the exact format shown below: | |
物料名称, 物料名称(英文), 物料规格, 采购数量, 单位, 单价, 计划号 | |
JSON data:""" + f""" | |
{json_output}""" | |
messages = [ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
client = OpenAI( | |
base_url="https://router.huggingface.co/novita", | |
api_key=HF_API_KEY, | |
) | |
completion = client.chat.completions.create( | |
model="deepseek/deepseek-r1-distill-qwen-14b", | |
messages=messages, | |
) | |
price_list = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL) | |
price_list = re.sub(r"^```json\n|```$", "", price_list, flags=re.DOTALL) | |
def json_to_excel(contract_summary, json_data, excel_path): | |
"""Converts extracted JSON tables to an Excel file.""" | |
# Correctly parse the JSON string | |
contract_summary_json = json.loads(json.loads(contract_summary)) | |
contract_summary_df = pd.DataFrame([contract_summary_json]) | |
# Ensure json_data is a dictionary | |
if isinstance(json_data, str): | |
json_data = json.loads(json_data) | |
long_tables = [pd.DataFrame(table) for key, table in json_data.items() if "long_table" in key and "summary" not in key] | |
long_table = long_tables[-1] if long_tables else pd.DataFrame() | |
with pd.ExcelWriter(excel_path) as writer: | |
contract_summary_df.to_excel(writer, sheet_name="Contract Summary", index=False) | |
long_table.to_excel(writer, sheet_name="Price List", index=False) | |
#--- Extract PO ------------------------------ | |
def extract_po(docx_path): | |
"""Processes a single .docx file, extracts tables, formats with OpenAI, and saves as an Excel file.""" | |
if not os.path.exists(docx_path) or not docx_path.endswith(".docx"): | |
raise ValueError(f"Invalid file: {docx_path}") | |
# Read the .docx file as bytes | |
with open(docx_path, "rb") as f: | |
docx_bytes = BytesIO(f.read()) | |
# Step 1: Extract XML content from DOCX | |
print("Extracting Docs data to XML...") | |
xml_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_document.xml" | |
xml_file = extract_docx_as_xml(docx_bytes, save_xml=True, xml_filename=xml_filename) | |
get_namespace(ET.fromstring(xml_file)) | |
# Step 2: Extract tables from DOCX and save JSON | |
print("Extracting XML data to JSON...") | |
json_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_extracted_data.json" | |
extracted_data = xml_to_json(xml_file, save_json=True, json_filename=json_filename) | |
# Step 2: Process JSON with OpenAI to get structured output | |
print("Processing JSON data with AI...") | |
contract_summary_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_contract_summary.json" | |
contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=True, json_filename=contract_summary_filename) | |
# Step 3: Save formatted data as Excel | |
print("Converting AI Generated JSON to Excel...") | |
excel_output_path = os.path.splitext(docx_path)[0] + ".xlsx" | |
json_to_excel(contract_summary, extracted_data, excel_output_path) | |
print(f"Excel file saved at: {excel_output_path}") | |
# Logging | |
log = f"""Results: | |
Contract Summary: {contract_summary}, | |
RAW Extracted Data: {extracted_data}, | |
XML Preview: {xml_file[:1000]}""" | |
print(log) | |
logging.info(f"""{log}""") | |
return excel_output_path | |
# Example Usage | |
# extract_po("test-contract-converted.docx") | |
# extract_po("test-contract.docx") | |
# Gradio Interface ------------------------------ | |
import gradio as gr | |
from gradio.themes.base import Base | |
interface = gr.Interface( | |
fn=extract_po, | |
title="PO Extractor 买卖合同数据提取", | |
inputs=gr.File(label="买卖合同 (.docx)"), | |
outputs=gr.File(label="数据提取结果 (.xlsx)"), | |
flagging_mode="never", | |
theme=Base() | |
) | |
interface.launch() | |