Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,9 +16,6 @@ import re
|
|
16 |
|
17 |
import logging
|
18 |
|
19 |
-
from pydantic import BaseModel, Field, ValidationError, RootModel
|
20 |
-
from typing import List, Optional
|
21 |
-
|
22 |
|
23 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
24 |
|
@@ -250,28 +247,7 @@ def process_long_table(rows):
|
|
250 |
|
251 |
table_data.append(row_data)
|
252 |
|
253 |
-
|
254 |
-
filtered_table_data = []
|
255 |
-
for row in table_data:
|
256 |
-
# Check potential serial number columns (use both Chinese and English variants)
|
257 |
-
serial_number = None
|
258 |
-
for column in row:
|
259 |
-
if any(term in column for term in ["序号"]):
|
260 |
-
serial_number = row[column]
|
261 |
-
break
|
262 |
-
|
263 |
-
# If we found a serial number column, check if its value is numeric
|
264 |
-
if serial_number is not None:
|
265 |
-
# Strip any non-numeric characters and check if there's still a value
|
266 |
-
# This keeps values like "1", "2." etc. but filters out "No." or other text
|
267 |
-
cleaned_number = re.sub(r'[^\d]', '', serial_number)
|
268 |
-
if cleaned_number: # If there are any digits left, keep the row
|
269 |
-
filtered_table_data.append(row)
|
270 |
-
else:
|
271 |
-
# If we couldn't find a serial number column, keep the row
|
272 |
-
filtered_table_data.append(row)
|
273 |
-
|
274 |
-
return filtered_table_data
|
275 |
|
276 |
def extract_tables(root):
|
277 |
"""Extracts tables from the DOCX document and returns structured data."""
|
@@ -426,6 +402,29 @@ Contract data in JSON format:""" + f"""
|
|
426 |
temperature=0.5,
|
427 |
)
|
428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
think_text = re.findall(r"<think>(.*?)</think>", completion.choices[0].message.content, flags=re.DOTALL)
|
430 |
if think_text:
|
431 |
print(f"Thought Process: {think_text}")
|
@@ -442,110 +441,50 @@ Contract data in JSON format:""" + f"""
|
|
442 |
return json.dumps(contract_summary, ensure_ascii=False, indent=4)
|
443 |
|
444 |
|
445 |
-
def deepseek_extract_price_list(
|
446 |
-
"""
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
# Pydantic schema
|
452 |
-
class PriceItem(BaseModel):
|
453 |
-
序号: str
|
454 |
-
名称: str
|
455 |
-
名称_英文: str = Field(..., alias="名称(英文)")
|
456 |
-
品牌: str
|
457 |
-
规格: str
|
458 |
-
所属机型: str
|
459 |
-
采购数量: str
|
460 |
-
单位: str
|
461 |
-
单价: str
|
462 |
-
总价: str
|
463 |
-
几郎单价: str
|
464 |
-
几郎总额: str
|
465 |
-
备注: str
|
466 |
-
计划来源: str
|
467 |
-
其他: dict = Field(default_factory=dict, alias="其他")
|
468 |
-
|
469 |
-
class PriceListModel(BaseModel):
|
470 |
-
items: List[PriceItem]
|
471 |
-
|
472 |
-
base_prompt = f"""你会接收到一个采购清单列表,请你提取以下字段并重新输出为一个结构化的 JSON 格式。
|
473 |
-
有时候第一行是表头,有时候是数据行,只输入数据行。请注意,输出的 JSON 需要符合以下格式要求:
|
474 |
-
|
475 |
-
# 输出格式要求:
|
476 |
-
每个条目输出以下字段:
|
477 |
-
- 序号
|
478 |
-
- 名称:只填中文
|
479 |
-
- 名称(英文):只填英文
|
480 |
-
- 品牌
|
481 |
-
- 规格
|
482 |
-
- 所属机型
|
483 |
-
- 采购数量
|
484 |
-
- 单位
|
485 |
-
- 单价: 只填数字
|
486 |
-
- 总价: 只填数字
|
487 |
-
- 几郎单价: 只填数字
|
488 |
-
- 几郎总额: 只填数字
|
489 |
-
- 备注
|
490 |
-
- 计划来源
|
491 |
-
- 其他:如果有以上以外的字段就以list的形式写在其他里 ("其他": "key1": "value1", "key2":"value2"),如果没有就给一个空的list
|
492 |
-
|
493 |
-
请确保输出的 JSON 是有效的,且字段名称与输入的字段名称一致。请注意,字段名称可能会有不同的拼写方式,请根据上下文进行判断。
|
494 |
-
请确保输出的条目数量与输入的列表数量一致。
|
495 |
-
|
496 |
-
# 原始价格表:
|
497 |
-
{price_list}"""
|
498 |
-
|
499 |
-
messages = [{"role": "user", "content": base_prompt}]
|
500 |
-
|
501 |
-
client = OpenAI(
|
502 |
-
base_url="https://router.huggingface.co/novita",
|
503 |
-
api_key=HF_API_KEY,
|
504 |
-
)
|
505 |
-
|
506 |
-
for attempt in range(3):
|
507 |
-
print(f"🔁 Attempt {attempt + 1} to extract and validate Price List")
|
508 |
-
|
509 |
-
try:
|
510 |
-
response = client.chat.completions.create(
|
511 |
-
model="deepseek/deepseek-r1-distill-qwen-14b",
|
512 |
-
messages=messages,
|
513 |
-
)
|
514 |
-
raw = response.choices[0].message.content
|
515 |
-
|
516 |
-
# Strip out LLM artifacts
|
517 |
-
raw = re.sub(r"<think>.*?</think>\s*", "", raw, flags=re.DOTALL)
|
518 |
-
raw = re.sub(r"^```json\n|```$", "", raw.strip(), flags=re.DOTALL)
|
519 |
|
520 |
-
|
521 |
-
|
522 |
-
raw = '{"items": ' + raw + '}'
|
523 |
|
524 |
-
|
525 |
-
|
|
|
|
|
526 |
|
527 |
-
|
528 |
-
|
529 |
-
json.dump(price_list_json, f, ensure_ascii=False, indent=4)
|
530 |
-
print(f"✅ Saved to {json_name}")
|
531 |
|
532 |
-
|
533 |
|
534 |
-
|
535 |
-
|
536 |
-
except Exception as e:
|
537 |
-
error_msg = f"Unexpected error: {e}"
|
538 |
|
539 |
-
|
540 |
-
|
541 |
"role": "user",
|
542 |
-
"content":
|
543 |
-
}
|
|
|
544 |
|
545 |
-
|
546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
|
|
|
548 |
|
|
|
549 |
def json_to_excel(contract_summary, json_data, excel_path):
|
550 |
"""Converts extracted JSON tables to an Excel file."""
|
551 |
|
@@ -568,7 +507,7 @@ def json_to_excel(contract_summary, json_data, excel_path):
|
|
568 |
#--- Extract PO ------------------------------
|
569 |
|
570 |
def extract_po(docx_path):
|
571 |
-
"""Processes a single .docx file, extracts tables, formats with OpenAI, and
|
572 |
if not os.path.exists(docx_path) or not docx_path.endswith(".docx"):
|
573 |
raise ValueError(f"Invalid file: {docx_path}")
|
574 |
|
@@ -579,42 +518,28 @@ def extract_po(docx_path):
|
|
579 |
# Step 1: Extract XML content from DOCX
|
580 |
print("Extracting Docs data to XML...")
|
581 |
xml_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_document.xml"
|
582 |
-
xml_file = extract_docx_as_xml(docx_bytes, save_xml=
|
583 |
|
584 |
get_namespace(ET.fromstring(xml_file))
|
585 |
|
586 |
# Step 2: Extract tables from DOCX and save JSON
|
587 |
print("Extracting XML data to JSON...")
|
588 |
json_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_extracted_data.json"
|
589 |
-
extracted_data = xml_to_json(xml_file, save_json=
|
590 |
|
591 |
-
# Step
|
592 |
-
print("Processing
|
593 |
contract_summary_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_contract_summary.json"
|
594 |
-
contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=
|
595 |
-
|
596 |
-
# Find the last long table (excluding summary tables)
|
597 |
-
print("Processing Price List data with AI...")
|
598 |
-
long_tables = [
|
599 |
-
table for key, table in json.loads(extracted_data).items()
|
600 |
-
if "long_table" in key and "summary" not in key
|
601 |
-
]
|
602 |
-
last_long_table = long_tables[-1] if long_tables else {}
|
603 |
-
|
604 |
-
# Generate the price list filename in the same folder as the document
|
605 |
-
price_list_filename = os.path.join(os.path.dirname(docx_path), os.path.splitext(os.path.basename(docx_path))[0] + "_price_list.json")
|
606 |
-
|
607 |
-
# Process the price list and save it to a JSON file
|
608 |
-
price_list = deepseek_extract_price_list(last_long_table, save_json=True, json_name=price_list_filename)
|
609 |
|
610 |
-
# Step
|
611 |
-
print("
|
612 |
-
|
613 |
-
|
614 |
-
"contract_summary": json.loads(json.loads(contract_summary)),
|
615 |
-
"price_list": price_list
|
616 |
-
}
|
617 |
|
|
|
|
|
|
|
618 |
# Logging
|
619 |
log = f"""Results:
|
620 |
|
@@ -622,20 +547,20 @@ def extract_po(docx_path):
|
|
622 |
|
623 |
RAW Extracted Data: {extracted_data},
|
624 |
|
625 |
-
|
626 |
|
627 |
print(log)
|
|
|
628 |
logging.info(f"""{log}""")
|
629 |
|
630 |
-
|
|
|
631 |
|
632 |
# Example Usage
|
633 |
|
634 |
# extract_po("test-contract-converted.docx")
|
635 |
# extract_po("test-contract.docx")
|
636 |
|
637 |
-
# print(deepseek_extract_price_list([{'序号 No.': '1', '名称 Name': 'PE波纹管(双壁波纹管) PE corrugated pipe (double wall corrugated pipe)', '规格 Specification': '内径600mm,6米/根,SN8 Inner diameter 600mm, 6 meters per piece, SN8', '单位 Unit': '米m', '数量 Quantity': '180', '单价(元) Unit Price (CNY)': '106.00', '总额(元) Total Amount (CNY)': '1080.00', '几郎单价(元) Unit Price (GNF)': '16.21', '几郎总额(元) Total Amount (GNF)': '22118.38', '品牌 Brand': '鹏洲PZ', '计划来源 Planned Source': 'SMB268-GNHY-0021-WJ-20250108'}]))
|
638 |
-
|
639 |
# Gradio Interface ------------------------------
|
640 |
|
641 |
import gradio as gr
|
@@ -645,10 +570,9 @@ interface = gr.Interface(
|
|
645 |
fn=extract_po,
|
646 |
title="PO Extractor 买卖合同数据提取",
|
647 |
inputs=gr.File(label="买卖合同 (.docx)"),
|
648 |
-
outputs=gr.
|
649 |
flagging_mode="never",
|
650 |
theme=Base()
|
651 |
)
|
652 |
|
653 |
interface.launch()
|
654 |
-
|
|
|
16 |
|
17 |
import logging
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
21 |
|
|
|
247 |
|
248 |
table_data.append(row_data)
|
249 |
|
250 |
+
return table_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
def extract_tables(root):
|
253 |
"""Extracts tables from the DOCX document and returns structured data."""
|
|
|
402 |
temperature=0.5,
|
403 |
)
|
404 |
|
405 |
+
# Deepseek V3 --------------------------------
|
406 |
+
# client = OpenAI(
|
407 |
+
# base_url="https://router.huggingface.co/novita",
|
408 |
+
# api_key=HF_API_KEY,
|
409 |
+
# )
|
410 |
+
|
411 |
+
# completion = client.chat.completions.create(
|
412 |
+
# model="deepseek/deepseek_v3",
|
413 |
+
# messages=messages,
|
414 |
+
# temperature=0.1,
|
415 |
+
# )
|
416 |
+
|
417 |
+
# Qwen 2.5 7B --------------------------------
|
418 |
+
# client = OpenAI(
|
419 |
+
# base_url="https://router.huggingface.co/together",
|
420 |
+
# api_key=HF_API_KEY,
|
421 |
+
# )
|
422 |
+
|
423 |
+
# completion = client.chat.completions.create(
|
424 |
+
# model="Qwen/Qwen2.5-7B-Instruct-Turbo",
|
425 |
+
# messages=messages,
|
426 |
+
# )
|
427 |
+
|
428 |
think_text = re.findall(r"<think>(.*?)</think>", completion.choices[0].message.content, flags=re.DOTALL)
|
429 |
if think_text:
|
430 |
print(f"Thought Process: {think_text}")
|
|
|
441 |
return json.dumps(contract_summary, ensure_ascii=False, indent=4)
|
442 |
|
443 |
|
444 |
+
def deepseek_extract_price_list(json_data):
|
445 |
+
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
|
446 |
+
|
447 |
+
# Step 1: Convert JSON string to Python dictionary
|
448 |
+
contract_data = json.loads(json_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
+
# Step 2: Remove keys that contain "long_table"
|
451 |
+
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" in key}
|
|
|
452 |
|
453 |
+
# Step 3: Convert back to JSON string (if needed)
|
454 |
+
json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4)
|
455 |
+
|
456 |
+
prompt = """You are given a price list in JSON format. Extract the following information in CSV format:
|
457 |
|
458 |
+
# Response Format
|
459 |
+
Return the extracted information as a CSV in the exact format shown below:
|
|
|
|
|
460 |
|
461 |
+
物料名称, 物料名称(英文), 物料规格, 采购数量, 单位, 单价, 计划号
|
462 |
|
463 |
+
JSON data:""" + f"""
|
464 |
+
{json_output}"""
|
|
|
|
|
465 |
|
466 |
+
messages = [
|
467 |
+
{
|
468 |
"role": "user",
|
469 |
+
"content": prompt
|
470 |
+
}
|
471 |
+
]
|
472 |
|
473 |
+
client = OpenAI(
|
474 |
+
base_url="https://router.huggingface.co/novita",
|
475 |
+
api_key=HF_API_KEY,
|
476 |
+
)
|
477 |
+
|
478 |
+
completion = client.chat.completions.create(
|
479 |
+
model="deepseek/deepseek-r1-distill-qwen-14b",
|
480 |
+
messages=messages,
|
481 |
+
)
|
482 |
+
|
483 |
+
price_list = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL)
|
484 |
|
485 |
+
price_list = re.sub(r"^```json\n|```$", "", price_list, flags=re.DOTALL)
|
486 |
|
487 |
+
|
488 |
def json_to_excel(contract_summary, json_data, excel_path):
|
489 |
"""Converts extracted JSON tables to an Excel file."""
|
490 |
|
|
|
507 |
#--- Extract PO ------------------------------
|
508 |
|
509 |
def extract_po(docx_path):
|
510 |
+
"""Processes a single .docx file, extracts tables, formats with OpenAI, and saves as an Excel file."""
|
511 |
if not os.path.exists(docx_path) or not docx_path.endswith(".docx"):
|
512 |
raise ValueError(f"Invalid file: {docx_path}")
|
513 |
|
|
|
518 |
# Step 1: Extract XML content from DOCX
|
519 |
print("Extracting Docs data to XML...")
|
520 |
xml_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_document.xml"
|
521 |
+
xml_file = extract_docx_as_xml(docx_bytes, save_xml=True, xml_filename=xml_filename)
|
522 |
|
523 |
get_namespace(ET.fromstring(xml_file))
|
524 |
|
525 |
# Step 2: Extract tables from DOCX and save JSON
|
526 |
print("Extracting XML data to JSON...")
|
527 |
json_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_extracted_data.json"
|
528 |
+
extracted_data = xml_to_json(xml_file, save_json=True, json_filename=json_filename)
|
529 |
|
530 |
+
# Step 2: Process JSON with OpenAI to get structured output
|
531 |
+
print("Processing JSON data with AI...")
|
532 |
contract_summary_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_contract_summary.json"
|
533 |
+
contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=True, json_filename=contract_summary_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
|
535 |
+
# Step 3: Save formatted data as Excel
|
536 |
+
print("Converting AI Generated JSON to Excel...")
|
537 |
+
excel_output_path = os.path.splitext(docx_path)[0] + ".xlsx"
|
538 |
+
json_to_excel(contract_summary, extracted_data, excel_output_path)
|
|
|
|
|
|
|
539 |
|
540 |
+
print(f"Excel file saved at: {excel_output_path}")
|
541 |
+
|
542 |
+
|
543 |
# Logging
|
544 |
log = f"""Results:
|
545 |
|
|
|
547 |
|
548 |
RAW Extracted Data: {extracted_data},
|
549 |
|
550 |
+
XML Preview: {xml_file[:1000]}"""
|
551 |
|
552 |
print(log)
|
553 |
+
|
554 |
logging.info(f"""{log}""")
|
555 |
|
556 |
+
|
557 |
+
return excel_output_path
|
558 |
|
559 |
# Example Usage
|
560 |
|
561 |
# extract_po("test-contract-converted.docx")
|
562 |
# extract_po("test-contract.docx")
|
563 |
|
|
|
|
|
564 |
# Gradio Interface ------------------------------
|
565 |
|
566 |
import gradio as gr
|
|
|
570 |
fn=extract_po,
|
571 |
title="PO Extractor 买卖合同数据提取",
|
572 |
inputs=gr.File(label="买卖合同 (.docx)"),
|
573 |
+
outputs=gr.File(label="数据提取结果 (.xlsx)"),
|
574 |
flagging_mode="never",
|
575 |
theme=Base()
|
576 |
)
|
577 |
|
578 |
interface.launch()
|
|