import os
from dotenv import load_dotenv
load_dotenv()
import json
import pandas as pd
import zipfile
import xml.etree.ElementTree as ET
from io import BytesIO
import openpyxl
from openai import OpenAI
import re
import logging
HF_API_KEY = os.getenv("HF_API_KEY")
# Configure logging to write to 'zaoju_logs.log' without using pickle
logging.basicConfig(
filename='extract_po_logs.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
encoding='utf-8'
)
# Default Word XML namespace
DEFAULT_NS = {'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main'}
NS = None # Global variable to store the namespace
def get_namespace(root):
"""Extracts the primary namespace from the XML root element while keeping the default."""
global NS
ns = root.tag.split('}')[0].strip('{')
NS = {'w': ns} if ns else DEFAULT_NS
return NS
# --- Helper Functions for DOCX Processing ---
def extract_text_from_cell(cell):
"""Extracts text from a Word table cell, preserving line breaks and reconstructing split words."""
paragraphs = cell.findall('.//w:p', NS)
lines = []
for paragraph in paragraphs:
# Get all text runs and concatenate their contents
text_runs = [t.text for t in paragraph.findall('.//w:t', NS) if t.text]
line = ''.join(text_runs).strip() # Merge split words properly
if line: # Add only non-empty lines
lines.append(line)
return lines # Return list of lines to preserve line breaks
def clean_spaces(text):
"""
Removes excessive spaces between Chinese characters while preserving spaces in English words.
"""
# Remove spaces **between** Chinese characters but keep English spaces
text = re.sub(r'([\u4e00-\u9fff])\s+([\u4e00-\u9fff])', r'\1\2', text)
return text.strip()
def extract_key_value_pairs(text, target_dict=None):
"""
Extracts multiple key-value pairs from a given text.
- First, split by more than 3 spaces (`\s{3,}`) **only if the next segment contains a `:`.**
- Then, process each segment by splitting at `:` to correctly assign keys and values.
"""
if target_dict is None:
target_dict = {}
text = text.replace(":", ":") # Normalize Chinese colons to English colons
# Step 1: Check if splitting by more than 3 spaces is necessary
segments = re.split(r'(\s{3,})', text) # Use raw string to prevent invalid escape sequence
# Step 2: Process each segment, ensuring we only split if the next part has a `:`
merged_segments = []
temp_segment = ""
for segment in segments:
if ":" in segment: # If segment contains `:`, it's a valid split point
if temp_segment:
merged_segments.append(temp_segment.strip())
temp_segment = ""
merged_segments.append(segment.strip())
else:
temp_segment += " " + segment.strip()
if temp_segment:
merged_segments.append(temp_segment.strip())
# Step 3: Extract key-value pairs correctly
for segment in merged_segments:
if ':' in segment:
key, value = segment.split(':', 1) # Only split at the first colon
key, value = key.strip(), value.strip() # Clean spaces
if key in target_dict:
target_dict[key] += "\n" + value # Append if key already exists
else:
target_dict[key] = value
return target_dict
# --- Table Processing Functions ---
def process_single_column_table(rows):
"""Processes a single-column table and returns the extracted lines as a list."""
single_column_data = []
for row in rows:
cells = row.findall('.//w:tc', NS)
if len(cells) == 1:
cell_lines = extract_text_from_cell(cells[0]) # Extract all lines from the cell
# Append each line directly to the list without splitting
single_column_data.extend(cell_lines)
return single_column_data # Return the list of extracted lines
def process_buyer_seller_table(rows):
"""Processes a two-column buyer-seller table into a structured dictionary using the first row as keys."""
headers = [extract_text_from_cell(cell) for cell in rows[0].findall('.//w:tc', NS)]
if len(headers) != 2:
return None # Not a buyer-seller table
# determine role based on header text
def get_role(header_text, default_role):
header_text = header_text.lower() # Convert to lowercase
if '买方' in header_text or 'buyer' in header_text or '甲方' in header_text:
return 'buyer_info'
elif '卖方' in header_text or 'seller' in header_text or '乙方' in header_text:
return 'seller_info'
else:
return default_role # Default if no keyword is found
# Determine the keys for buyer and seller columns
buyer_key = get_role(headers[0][0], 'buyer_info')
seller_key = get_role(headers[1][0], 'seller_info')
# Initialize the dictionary using the determined keys
buyer_seller_data = {
buyer_key: {},
seller_key: {}
}
for row in rows:
cells = row.findall('.//w:tc', NS)
if len(cells) == 2:
buyer_lines = extract_text_from_cell(cells[0])
seller_lines = extract_text_from_cell(cells[1])
for line in buyer_lines:
extract_key_value_pairs(line, buyer_seller_data[buyer_key])
for line in seller_lines:
extract_key_value_pairs(line, buyer_seller_data[seller_key])
return buyer_seller_data
def process_summary_table(rows):
"""Processes a two-column summary table where keys are extracted as dictionary keys."""
extracted_data = []
for row in rows:
cells = row.findall('.//w:tc', NS)
if len(cells) == 2:
key = " ".join(extract_text_from_cell(cells[0]))
value = " ".join(extract_text_from_cell(cells[1]))
extracted_data.append({key: value})
return extracted_data
def extract_headers(first_row_cells):
"""Extracts unique column headers from the first row of a table."""
headers = []
header_count = {}
for cell in first_row_cells:
cell_text = " ".join(extract_text_from_cell(cell))
grid_span = cell.find('.//w:gridSpan', NS)
col_span = int(grid_span.attrib.get(f'{{{NS["w"]}}}val', '1')) if grid_span is not None else 1
for _ in range(col_span):
# Ensure header uniqueness by appending an index if repeated
if cell_text in header_count:
header_count[cell_text] += 1
unique_header = f"{cell_text}_{header_count[cell_text]}"
else:
header_count[cell_text] = 1
unique_header = cell_text
headers.append(unique_header if unique_header else f"Column_{len(headers) + 1}")
return headers
def process_long_table(rows):
"""Processes a standard table and correctly handles horizontally merged cells."""
if not rows:
return [] # Avoid IndexError
headers = extract_headers(rows[0].findall('.//w:tc', NS))
table_data = []
vertical_merge_tracker = {}
for row in rows[1:]:
row_data = {}
cells = row.findall('.//w:tc', NS)
running_index = 0
for cell in cells:
cell_text = " ".join(extract_text_from_cell(cell))
# Consistent Namespace Handling for Horizontal Merge
grid_span = cell.find('.//w:gridSpan', NS)
grid_span_val = grid_span.attrib.get(f'{{{NS["w"]}}}val') if grid_span is not None else '1'
col_span = int(grid_span_val)
# Handle vertical merge
v_merge = cell.find('.//w:vMerge', NS)
if v_merge is not None:
v_merge_val = v_merge.attrib.get(f'{{{NS["w"]}}}val')
if v_merge_val == 'restart':
vertical_merge_tracker[running_index] = cell_text
else:
# Repeat the value from the previous row's merged cell
cell_text = vertical_merge_tracker.get(running_index, "")
# Repeat the value for horizontally merged cells
start_col = running_index
end_col = running_index + col_span
# Repeat the value for each spanned column
for col in range(start_col, end_col):
key = headers[col] if col < len(headers) else f"Column_{col+1}"
row_data[key] = cell_text
# Update the running index to the end of the merged cell
running_index = end_col
# Fill remaining columns with empty strings to maintain alignment
while running_index < len(headers):
row_data[headers[running_index]] = ""
running_index += 1
table_data.append(row_data)
return table_data
def extract_tables(root):
"""Extracts tables from the DOCX document and returns structured data."""
tables = root.findall('.//w:tbl', NS)
table_data = {}
table_paragraphs = set()
for table_index, table in enumerate(tables, start=1):
rows = table.findall('.//w:tr', NS)
if not rows:
continue # Skip empty tables
for paragraph in table.findall('.//w:p', NS):
table_paragraphs.add(paragraph)
first_row_cells = rows[0].findall('.//w:tc', NS)
num_columns = len(first_row_cells)
if num_columns == 1:
single_column_data = process_single_column_table(rows)
if single_column_data:
table_data[f"table_{table_index}_single_column"] = single_column_data
continue # Skip further processing for this table
summary_start_index = None
for i, row in enumerate(rows):
if len(row.findall('.//w:tc', NS)) == 2:
summary_start_index = i
break
long_table_data = []
summary_data = []
if summary_start_index is not None and summary_start_index > 0:
long_table_data = process_long_table(rows[:summary_start_index])
elif summary_start_index is None:
long_table_data = process_long_table(rows)
if summary_start_index is not None:
is_buyer_seller_table = all(len(row.findall('.//w:tc', NS)) == 2 for row in rows)
if is_buyer_seller_table:
buyer_seller_data = process_buyer_seller_table(rows)
if buyer_seller_data:
table_data[f"table_{table_index}_buyer_seller"] = buyer_seller_data
else:
summary_data = process_summary_table(rows[summary_start_index:])
if long_table_data:
table_data[f"long_table_{table_index}"] = long_table_data
if summary_data:
table_data[f"long_table_{table_index}_summary"] = summary_data
return table_data, table_paragraphs
# --- Non-Table Processing Functions ---
def extract_text_outside_tables(root, table_paragraphs):
"""Extracts text from paragraphs outside tables in the document."""
extracted_text = []
for paragraph in root.findall('.//w:p', NS):
if paragraph in table_paragraphs:
continue # Skip paragraphs inside tables
texts = [t.text.strip() for t in paragraph.findall('.//w:t', NS) if t.text]
line = clean_spaces(' '.join(texts).replace(':',':')) # Clean colons and spaces
if ':' in line:
extracted_text.append(line)
return extracted_text
# --- Main Extraction Functions ---
def extract_docx_as_xml(file_bytes, save_xml=False, xml_filename="document.xml"):
# Ensure file_bytes is at the start position
file_bytes.seek(0)
with zipfile.ZipFile(file_bytes, 'r') as docx:
with docx.open('word/document.xml') as xml_file:
xml_content = xml_file.read().decode('utf-8')
if save_xml:
with open(xml_filename, "w", encoding="utf-8") as f:
f.write(xml_content)
return xml_content
def xml_to_json(xml_content, save_json=False, json_filename="extracted_data.json"):
tree = ET.ElementTree(ET.fromstring(xml_content))
root = tree.getroot()
table_data, table_paragraphs = extract_tables(root)
extracted_data = table_data
extracted_data["non_table_data"] = extract_text_outside_tables(root, table_paragraphs)
if save_json:
with open(json_filename, "w", encoding="utf-8") as f:
json.dump(extracted_data, f, ensure_ascii=False, indent=4)
return json.dumps(extracted_data, ensure_ascii=False, indent=4)
def deepseek_extract_contract_summary(json_data, save_json=False, json_filename="contract_summary.json"):
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
# Step 1: Convert JSON string to Python dictionary
contract_data = json.loads(json_data)
# Step 2: Remove keys that contain "long_table"
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" not in key}
# Step 3: Convert back to JSON string (if needed)
json_output = json.dumps(contract_data, ensure_ascii=False, indent=4)
prompt = """You are given a contract in JSON format. Extract the following information:
# Response Format
Return the extracted information as a structured JSON in the exact format shown below (Note: Do not repeat any keys, if unsure leave the value empty):
{
"合同编号":
"接收人": (注意:不是买家必须是接收人,不是一个公司而是一个人)
"Recipient":
"接收地": (注意:不是交货地点是目的港,只写中文,英文写在 place of receipt)
"Place of receipt": (只写英文, 如果接收地/目的港/Port of destination 有英文可填在这里)
"供应商":
"币种": (主要用的货币,填英文缩写。GNF一般是为了方便而转换出来的, 除非只有GNF,GNF一般不是主要币种。)
"供货日期": (如果合同里有写才填,不要自己推理出日期,必须是一个日期,而不是天数)
}
Contract data in JSON format:""" + f"""
{json_output}"""
messages = [
{
"role": "user",
"content": prompt
}
]
# Deepseek R1 Distilled Qwen 2.5 14B --------------------------------
client = OpenAI(
base_url="https://router.huggingface.co/novita",
api_key=HF_API_KEY,
)
completion = client.chat.completions.create(
model="deepseek/deepseek-r1-distill-qwen-14b",
messages=messages,
temperature=0.5,
)
# Deepseek V3 --------------------------------
# client = OpenAI(
# base_url="https://router.huggingface.co/novita",
# api_key=HF_API_KEY,
# )
# completion = client.chat.completions.create(
# model="deepseek/deepseek_v3",
# messages=messages,
# temperature=0.1,
# )
# Qwen 2.5 7B --------------------------------
# client = OpenAI(
# base_url="https://router.huggingface.co/together",
# api_key=HF_API_KEY,
# )
# completion = client.chat.completions.create(
# model="Qwen/Qwen2.5-7B-Instruct-Turbo",
# messages=messages,
# )
think_text = re.findall(r"(.*?)", completion.choices[0].message.content, flags=re.DOTALL)
if think_text:
print(f"Thought Process: {think_text}")
logging.info(f"Think text: {think_text}")
contract_summary = re.sub(r".*?\s*", "", completion.choices[0].message.content, flags=re.DOTALL) # Remove think
contract_summary = re.sub(r"^```json\n|```$", "", contract_summary, flags=re.DOTALL) # Remove ```
if save_json:
with open(json_filename, "w", encoding="utf-8") as f:
f.write(contract_summary)
return json.dumps(contract_summary, ensure_ascii=False, indent=4)
def deepseek_extract_price_list(json_data):
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
# Step 1: Convert JSON string to Python dictionary
contract_data = json.loads(json_data)
# Step 2: Remove keys that contain "long_table"
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" in key}
# Step 3: Convert back to JSON string (if needed)
json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4)
prompt = """You are given a price list in JSON format. Extract the following information in CSV format:
# Response Format
Return the extracted information as a CSV in the exact format shown below:
物料名称, 物料名称(英文), 物料规格, 采购数量, 单位, 单价, 计划号
JSON data:""" + f"""
{json_output}"""
messages = [
{
"role": "user",
"content": prompt
}
]
client = OpenAI(
base_url="https://router.huggingface.co/novita",
api_key=HF_API_KEY,
)
completion = client.chat.completions.create(
model="deepseek/deepseek-r1-distill-qwen-14b",
messages=messages,
)
price_list = re.sub(r".*?\s*", "", completion.choices[0].message.content, flags=re.DOTALL)
price_list = re.sub(r"^```json\n|```$", "", price_list, flags=re.DOTALL)
def json_to_excel(contract_summary, json_data, excel_path):
"""Converts extracted JSON tables to an Excel file."""
# Correctly parse the JSON string
contract_summary_json = json.loads(json.loads(contract_summary))
contract_summary_df = pd.DataFrame([contract_summary_json])
# Ensure json_data is a dictionary
if isinstance(json_data, str):
json_data = json.loads(json_data)
long_tables = [pd.DataFrame(table) for key, table in json_data.items() if "long_table" in key and "summary" not in key]
long_table = long_tables[-1] if long_tables else pd.DataFrame()
with pd.ExcelWriter(excel_path) as writer:
contract_summary_df.to_excel(writer, sheet_name="Contract Summary", index=False)
long_table.to_excel(writer, sheet_name="Price List", index=False)
#--- Extract PO ------------------------------
def extract_po(docx_path):
"""Processes a single .docx file, extracts tables, formats with OpenAI, and saves as an Excel file."""
if not os.path.exists(docx_path) or not docx_path.endswith(".docx"):
raise ValueError(f"Invalid file: {docx_path}")
# Read the .docx file as bytes
with open(docx_path, "rb") as f:
docx_bytes = BytesIO(f.read())
# Step 1: Extract XML content from DOCX
print("Extracting Docs data to XML...")
xml_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_document.xml"
xml_file = extract_docx_as_xml(docx_bytes, save_xml=True, xml_filename=xml_filename)
get_namespace(ET.fromstring(xml_file))
# Step 2: Extract tables from DOCX and save JSON
print("Extracting XML data to JSON...")
json_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_extracted_data.json"
extracted_data = xml_to_json(xml_file, save_json=True, json_filename=json_filename)
# Step 2: Process JSON with OpenAI to get structured output
print("Processing JSON data with AI...")
contract_summary_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_contract_summary.json"
contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=True, json_filename=contract_summary_filename)
# Step 3: Save formatted data as Excel
print("Converting AI Generated JSON to Excel...")
excel_output_path = os.path.splitext(docx_path)[0] + ".xlsx"
json_to_excel(contract_summary, extracted_data, excel_output_path)
print(f"Excel file saved at: {excel_output_path}")
# Logging
log = f"""Results:
Contract Summary: {contract_summary},
RAW Extracted Data: {extracted_data},
XML Preview: {xml_file[:1000]}"""
print(log)
logging.info(f"""{log}""")
return excel_output_path
# Example Usage
# extract_po("test-contract-converted.docx")
# extract_po("test-contract.docx")
# Gradio Interface ------------------------------
import gradio as gr
from gradio.themes.base import Base
interface = gr.Interface(
fn=extract_po,
title="PO Extractor 买卖合同数据提取",
inputs=gr.File(label="买卖合同 (.docx)"),
outputs=gr.File(label="数据提取结果 (.xlsx)"),
flagging_mode="never",
theme=Base()
)
interface.launch()