File size: 20,916 Bytes
630f048
5ad3b9b
6b01677
630f048
 
 
 
 
 
 
f22f766
630f048
 
 
 
 
 
 
6b01677
5ad3b9b
 
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc3a10
 
 
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c93df8
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be131b
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be131b
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be131b
 
630f048
 
 
 
 
 
 
 
 
4ad44cc
630f048
 
 
 
5be131b
630f048
 
 
5be131b
630f048
6b01677
 
630f048
5be131b
6b01677
630f048
 
 
 
 
 
 
 
 
 
 
 
5be131b
630f048
 
 
 
 
 
 
 
5be131b
630f048
 
3c93df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be131b
 
 
 
 
630f048
 
 
 
 
5be131b
630f048
 
 
 
5be131b
3c93df8
 
 
 
 
630f048
3c93df8
 
20e903b
3c93df8
 
 
 
20e903b
3c93df8
 
20e903b
3c93df8
20e903b
3c93df8
 
20e903b
3c93df8
 
630f048
3c93df8
 
 
630f048
3c93df8
 
 
 
 
 
 
 
 
 
 
630f048
3c93df8
630f048
3c93df8
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c93df8
630f048
5820502
630f048
 
 
 
 
 
 
5be131b
3c93df8
630f048
 
 
 
 
5be131b
3c93df8
630f048
3c93df8
 
5be131b
3c93df8
20e903b
3c93df8
 
 
 
20e903b
3c93df8
 
 
630f048
 
 
 
 
 
 
3c93df8
630f048
 
3c93df8
630f048
 
3c93df8
 
630f048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c93df8
2fa0283
630f048
 
 
441d8f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import os
from dotenv import load_dotenv
load_dotenv()

import json
import pandas as pd

import zipfile
import xml.etree.ElementTree as ET
from io import BytesIO
import openpyxl

from openai import OpenAI

import re

import logging


HF_API_KEY = os.getenv("HF_API_KEY")

# Configure logging to write to 'zaoju_logs.log' without using pickle
logging.basicConfig(
    filename='extract_po_logs.log',
    level=logging.INFO, 
    format='%(asctime)s - %(levelname)s - %(message)s',
    encoding='utf-8'
)

# Default Word XML namespace
DEFAULT_NS = {'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main'}
NS = None  # Global variable to store the namespace

def get_namespace(root):
    """Extracts the primary namespace from the XML root element while keeping the default."""
    global NS

    ns = root.tag.split('}')[0].strip('{')
    NS = {'w': ns} if ns else DEFAULT_NS

    return NS

# --- Helper Functions for DOCX Processing ---

def extract_text_from_cell(cell):
    """Extracts text from a Word table cell, preserving line breaks and reconstructing split words."""
    paragraphs = cell.findall('.//w:p', NS)
    lines = []
    
    for paragraph in paragraphs:
        # Get all text runs and concatenate their contents
        text_runs = [t.text for t in paragraph.findall('.//w:t', NS) if t.text]
        line = ''.join(text_runs).strip()  # Merge split words properly
        
        if line:  # Add only non-empty lines
            lines.append(line)
    
    return lines  # Return list of lines to preserve line breaks

def clean_spaces(text):
    """
    Removes excessive spaces between Chinese characters while preserving spaces in English words.
    """
    # Remove spaces **between** Chinese characters but keep English spaces
    text = re.sub(r'([\u4e00-\u9fff])\s+([\u4e00-\u9fff])', r'\1\2', text)
    return text.strip()

def extract_key_value_pairs(text, target_dict=None):
    """
    Extracts multiple key-value pairs from a given text.
    - First, split by more than 3 spaces (`\s{3,}`) **only if the next segment contains a `:`.**
    - Then, process each segment by splitting at `:` to correctly assign keys and values.
    """
    if target_dict is None:
        target_dict = {}

    text = text.replace(":", ":")  # Normalize Chinese colons to English colons

    # Step 1: Check if splitting by more than 3 spaces is necessary
    segments = re.split(r'(\s{3,})', text)  # Use raw string to prevent invalid escape sequence

    # Step 2: Process each segment, ensuring we only split if the next part has a `:`
    merged_segments = []
    temp_segment = ""

    for segment in segments:
        if ":" in segment:  # If segment contains `:`, it's a valid split point
            if temp_segment:
                merged_segments.append(temp_segment.strip())
                temp_segment = ""
            merged_segments.append(segment.strip())
        else:
            temp_segment += " " + segment.strip()

    if temp_segment:
        merged_segments.append(temp_segment.strip())

    # Step 3: Extract key-value pairs correctly
    for segment in merged_segments:
        if ':' in segment:
            key, value = segment.split(':', 1)  # Only split at the first colon
            key, value = key.strip(), value.strip()  # Clean spaces

            if key in target_dict:
                target_dict[key] += "\n" + value  # Append if key already exists
            else:
                target_dict[key] = value

    return target_dict

# --- Table Processing Functions ---

def process_single_column_table(rows):
    """Processes a single-column table and returns the extracted lines as a list."""
    single_column_data = []

    for row in rows:
        cells = row.findall('.//w:tc', NS)
        if len(cells) == 1:
            cell_lines = extract_text_from_cell(cells[0])  # Extract all lines from the cell
            
            # Append each line directly to the list without splitting
            single_column_data.extend(cell_lines)

    return single_column_data  # Return the list of extracted lines

def process_buyer_seller_table(rows):
    """Processes a two-column buyer-seller table into a structured dictionary using the first row as keys."""
    headers = [extract_text_from_cell(cell) for cell in rows[0].findall('.//w:tc', NS)]
    if len(headers) != 2:
        return None  # Not a buyer-seller table

    # determine role based on header text
    def get_role(header_text, default_role):
        header_text = header_text.lower()  # Convert to lowercase
        if '买方' in header_text or 'buyer' in header_text or '甲方' in header_text:
            return 'buyer_info'
        elif '卖方' in header_text or 'seller' in header_text or '乙方' in header_text:
            return 'seller_info'
        else:
            return default_role  # Default if no keyword is found

    # Determine the keys for buyer and seller columns
    buyer_key = get_role(headers[0][0], 'buyer_info')
    seller_key = get_role(headers[1][0], 'seller_info')

    # Initialize the dictionary using the determined keys
    buyer_seller_data = {
        buyer_key: {},
        seller_key: {}
    }

    for row in rows:
        cells = row.findall('.//w:tc', NS)
        if len(cells) == 2:
            buyer_lines = extract_text_from_cell(cells[0])
            seller_lines = extract_text_from_cell(cells[1])

        for line in buyer_lines:
            extract_key_value_pairs(line, buyer_seller_data[buyer_key])

        for line in seller_lines:
            extract_key_value_pairs(line, buyer_seller_data[seller_key])
            
    return buyer_seller_data

def process_summary_table(rows):
    """Processes a two-column summary table where keys are extracted as dictionary keys."""
    extracted_data = []
    
    for row in rows:
        cells = row.findall('.//w:tc', NS)
        if len(cells) == 2:
            key = " ".join(extract_text_from_cell(cells[0]))
            value = " ".join(extract_text_from_cell(cells[1]))
            extracted_data.append({key: value})
    
    return extracted_data

def extract_headers(first_row_cells):
    """Extracts unique column headers from the first row of a table."""
    headers = []
    header_count = {}
    for cell in first_row_cells:
        cell_text = " ".join(extract_text_from_cell(cell))
        grid_span = cell.find('.//w:gridSpan', NS)
        col_span = int(grid_span.attrib.get(f'{{{NS["w"]}}}val', '1')) if grid_span is not None else 1
        for _ in range(col_span):
            # Ensure header uniqueness by appending an index if repeated
            if cell_text in header_count:
                header_count[cell_text] += 1
                unique_header = f"{cell_text}_{header_count[cell_text]}"
            else:
                header_count[cell_text] = 1
                unique_header = cell_text
            headers.append(unique_header if unique_header else f"Column_{len(headers) + 1}")
    return headers

def process_long_table(rows):
    """Processes a standard table and correctly handles horizontally merged cells."""
    if not rows:
        return []  # Avoid IndexError
    
    headers = extract_headers(rows[0].findall('.//w:tc', NS))
    table_data = []
    vertical_merge_tracker = {}

    for row in rows[1:]:
        row_data = {}
        cells = row.findall('.//w:tc', NS)
        running_index = 0
        
        for cell in cells:
            cell_text = " ".join(extract_text_from_cell(cell))
            
            # Consistent Namespace Handling for Horizontal Merge
            grid_span = cell.find('.//w:gridSpan', NS)
            grid_span_val = grid_span.attrib.get(f'{{{NS["w"]}}}val') if grid_span is not None else '1'
            col_span = int(grid_span_val)
            
            # Handle vertical merge
            v_merge = cell.find('.//w:vMerge', NS)
            if v_merge is not None:
                v_merge_val = v_merge.attrib.get(f'{{{NS["w"]}}}val')
                if v_merge_val == 'restart':
                    vertical_merge_tracker[running_index] = cell_text
                else:
                    # Repeat the value from the previous row's merged cell
                    cell_text = vertical_merge_tracker.get(running_index, "")
            
            # Repeat the value for horizontally merged cells
            start_col = running_index
            end_col = running_index + col_span
            
            # Repeat the value for each spanned column
            for col in range(start_col, end_col):
                key = headers[col] if col < len(headers) else f"Column_{col+1}"
                row_data[key] = cell_text
            
            # Update the running index to the end of the merged cell
            running_index = end_col
        
        # Fill remaining columns with empty strings to maintain alignment
        while running_index < len(headers):
            row_data[headers[running_index]] = ""
            running_index += 1
        
        table_data.append(row_data)
    
    return table_data

def extract_tables(root):
    """Extracts tables from the DOCX document and returns structured data."""
    tables = root.findall('.//w:tbl', NS)
    table_data = {}
    table_paragraphs = set()
    
    for table_index, table in enumerate(tables, start=1):
        rows = table.findall('.//w:tr', NS)
        if not rows:
            continue  # Skip empty tables
        
        for paragraph in table.findall('.//w:p', NS):
            table_paragraphs.add(paragraph)
        
        first_row_cells = rows[0].findall('.//w:tc', NS)
        num_columns = len(first_row_cells)

        if num_columns == 1:
            single_column_data = process_single_column_table(rows)
            if single_column_data:
                table_data[f"table_{table_index}_single_column"] = single_column_data
            continue  # Skip further processing for this table

        summary_start_index = None
        for i, row in enumerate(rows):
            if len(row.findall('.//w:tc', NS)) == 2:
                summary_start_index = i
                break

        long_table_data = []
        summary_data = []

        if summary_start_index is not None and summary_start_index > 0:
            long_table_data = process_long_table(rows[:summary_start_index])
        elif summary_start_index is None:
            long_table_data = process_long_table(rows)

        if summary_start_index is not None:
            is_buyer_seller_table = all(len(row.findall('.//w:tc', NS)) == 2 for row in rows)
            if is_buyer_seller_table:
                buyer_seller_data = process_buyer_seller_table(rows)
                if buyer_seller_data:
                    table_data[f"table_{table_index}_buyer_seller"] = buyer_seller_data
            else:
                summary_data = process_summary_table(rows[summary_start_index:])
    
        if long_table_data:
            table_data[f"long_table_{table_index}"] = long_table_data
        if summary_data:
            table_data[f"long_table_{table_index}_summary"] = summary_data
    
    return table_data, table_paragraphs

# --- Non-Table Processing Functions ---

def extract_text_outside_tables(root, table_paragraphs):
    """Extracts text from paragraphs outside tables in the document."""
    extracted_text = []
    
    for paragraph in root.findall('.//w:p', NS):
        if paragraph in table_paragraphs:
            continue  # Skip paragraphs inside tables
        
        texts = [t.text.strip() for t in paragraph.findall('.//w:t', NS) if t.text]
        line = clean_spaces(' '.join(texts).replace(':',':'))  # Clean colons and spaces
        
        if ':' in line:
            extracted_text.append(line)
    
    return extracted_text

# --- Main Extraction Functions ---

def extract_docx_as_xml(file_bytes, save_xml=False, xml_filename="document.xml"):

    # Ensure file_bytes is at the start position
    file_bytes.seek(0)

    with zipfile.ZipFile(file_bytes, 'r') as docx:
        with docx.open('word/document.xml') as xml_file:
            xml_content = xml_file.read().decode('utf-8')
            if save_xml:
                with open(xml_filename, "w", encoding="utf-8") as f:
                    f.write(xml_content)
            return xml_content


def xml_to_json(xml_content, save_json=False, json_filename="extracted_data.json"):
    
    tree = ET.ElementTree(ET.fromstring(xml_content))
    root = tree.getroot()
    
    table_data, table_paragraphs = extract_tables(root)
    extracted_data = table_data
    extracted_data["non_table_data"] = extract_text_outside_tables(root, table_paragraphs)
    
    if save_json:
        with open(json_filename, "w", encoding="utf-8") as f:
            json.dump(extracted_data, f, ensure_ascii=False, indent=4)
    
    return json.dumps(extracted_data, ensure_ascii=False, indent=4)


def deepseek_extract_contract_summary(json_data, save_json=False, json_filename="contract_summary.json"):
    """Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
    
    # Step 1: Convert JSON string to Python dictionary
    contract_data = json.loads(json_data)

    # Step 2: Remove keys that contain "long_table"
    filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" not in key}

    # Step 3: Convert back to JSON string (if needed)
    json_output = json.dumps(contract_data, ensure_ascii=False, indent=4)
    
    prompt = """You are given a contract in JSON format. Extract the following information:

# Response Format
Return the extracted information as a structured JSON in the exact format shown below (Note: Do not repeat any keys, if unsure leave the value empty):

{
    "合同编号":
    "接收人": (注意:不是买家必须是接收人,不是一个公司而是一个人)
    "Recipient":
    "接收地": (注意:不是交货地点是目的港,只写中文,英文写在 place of receipt)
    "Place of receipt": (只写英文, 如果接收地/目的港/Port of destination 有英文可填在这里)
    "供应商":
    "币种": (主要用的货币,填英文缩写。GNF一般是为了方便而转换出来的, 除非只有GNF,GNF一般不是主要币种。)
    "供货日期": (如果合同里有写才填,不要自己推理出日期,必须是一个日期,而不是天数)
}

Contract data in JSON format:""" + f"""
{json_output}"""

    messages = [
        {
            "role": "user",
            "content": prompt
        }
    ]
    
    # Deepseek R1 Distilled Qwen 2.5 14B --------------------------------
    client = OpenAI(
        base_url="https://router.huggingface.co/novita",
        api_key=HF_API_KEY,
    )
    
    completion = client.chat.completions.create(
        model="deepseek/deepseek-r1-distill-qwen-14b", 
        messages=messages, 
        temperature=0.5,
    )
    
    # Deepseek V3 --------------------------------
    # client = OpenAI(
    #     base_url="https://router.huggingface.co/novita",
    #     api_key=HF_API_KEY,
    # )
    
    # completion = client.chat.completions.create(
    #     model="deepseek/deepseek_v3", 
    #     messages=messages, 
    #     temperature=0.1,
    # )
    
    # Qwen 2.5 7B --------------------------------
    # client = OpenAI(
    #     base_url="https://router.huggingface.co/together",
    #     api_key=HF_API_KEY,
    # )
    
    # completion = client.chat.completions.create(
    #     model="Qwen/Qwen2.5-7B-Instruct-Turbo", 
    #     messages=messages, 
    # )
    
    think_text = re.findall(r"<think>(.*?)</think>", completion.choices[0].message.content, flags=re.DOTALL)
    if think_text:
        print(f"Thought Process: {think_text}")
        logging.info(f"Think text: {think_text}")
        
    contract_summary = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL) # Remove think
    
    contract_summary = re.sub(r"^```json\n|```$", "", contract_summary, flags=re.DOTALL) # Remove ```
    
    if save_json:
        with open(json_filename, "w", encoding="utf-8") as f:
            f.write(contract_summary)
    
    return json.dumps(contract_summary, ensure_ascii=False, indent=4)


def deepseek_extract_price_list(json_data):
    """Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
    
    # Step 1: Convert JSON string to Python dictionary
    contract_data = json.loads(json_data)

    # Step 2: Remove keys that contain "long_table"
    filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" in key}

    # Step 3: Convert back to JSON string (if needed)
    json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4)
    
    prompt = """You are given a price list in JSON format. Extract the following information in CSV format:

# Response Format
Return the extracted information as a CSV in the exact format shown below:

物料名称, 物料名称(英文), 物料规格, 采购数量, 单位, 单价, 计划号

JSON data:""" + f"""
{json_output}"""

    messages = [
        {
            "role": "user",
            "content": prompt
        }
    ]

    client = OpenAI(
	    base_url="https://router.huggingface.co/novita",
	    api_key=HF_API_KEY,
    )
    
    completion = client.chat.completions.create(
        model="deepseek/deepseek-r1-distill-qwen-14b", 
        messages=messages, 
    )
    
    price_list = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL)
    
    price_list = re.sub(r"^```json\n|```$", "", price_list, flags=re.DOTALL)
    

def json_to_excel(contract_summary, json_data, excel_path):
    """Converts extracted JSON tables to an Excel file."""

    # Correctly parse the JSON string
    contract_summary_json = json.loads(json.loads(contract_summary))
    
    contract_summary_df = pd.DataFrame([contract_summary_json])
    
    # Ensure json_data is a dictionary
    if isinstance(json_data, str):
        json_data = json.loads(json_data)
    
    long_tables = [pd.DataFrame(table) for key, table in json_data.items() if "long_table" in key and "summary" not in key]
    long_table = long_tables[-1] if long_tables else pd.DataFrame()

    with pd.ExcelWriter(excel_path) as writer:
        contract_summary_df.to_excel(writer, sheet_name="Contract Summary", index=False)
        long_table.to_excel(writer, sheet_name="Price List", index=False)

#--- Extract PO ------------------------------

def extract_po(docx_path):
    """Processes a single .docx file, extracts tables, formats with OpenAI, and saves as an Excel file."""
    if not os.path.exists(docx_path) or not docx_path.endswith(".docx"):
        raise ValueError(f"Invalid file: {docx_path}")
    
    # Read the .docx file as bytes
    with open(docx_path, "rb") as f:
        docx_bytes = BytesIO(f.read())
        
    # Step 1: Extract XML content from DOCX
    print("Extracting Docs data to XML...")
    xml_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_document.xml"
    xml_file = extract_docx_as_xml(docx_bytes, save_xml=True, xml_filename=xml_filename)
    
    get_namespace(ET.fromstring(xml_file))
    
    # Step 2: Extract tables from DOCX and save JSON
    print("Extracting XML data to JSON...")
    json_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_extracted_data.json"
    extracted_data = xml_to_json(xml_file, save_json=True, json_filename=json_filename)

    # Step 2: Process JSON with OpenAI to get structured output
    print("Processing JSON data with AI...")
    contract_summary_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_contract_summary.json"
    contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=True, json_filename=contract_summary_filename)

    # Step 3: Save formatted data as Excel
    print("Converting AI Generated JSON to Excel...")
    excel_output_path = os.path.splitext(docx_path)[0] + ".xlsx"
    json_to_excel(contract_summary, extracted_data, excel_output_path)

    print(f"Excel file saved at: {excel_output_path}")
    
    
    # Logging
    log = f"""Results:
    
    Contract Summary: {contract_summary},
    
    RAW Extracted Data: {extracted_data},
    
    XML Preview: {xml_file[:1000]}"""
    
    print(log)
    
    logging.info(f"""{log}""")
    
    
    return excel_output_path

# Example Usage

# extract_po("test-contract-converted.docx")
# extract_po("test-contract.docx")

# Gradio Interface ------------------------------

import gradio as gr
from gradio.themes.base import Base

interface = gr.Interface(
    fn=extract_po,
    title="PO Extractor 买卖合同数据提取", 
    inputs=gr.File(label="买卖合同 (.docx)"),
    outputs=gr.File(label="数据提取结果 (.xlsx)"),
    flagging_mode="never",
    theme=Base()
)

interface.launch()