Spaces:
Sleeping
Sleeping
File size: 20,916 Bytes
630f048 5ad3b9b 6b01677 630f048 f22f766 630f048 6b01677 5ad3b9b 630f048 1cc3a10 630f048 3c93df8 630f048 5be131b 630f048 5be131b 630f048 5be131b 630f048 4ad44cc 630f048 5be131b 630f048 5be131b 630f048 6b01677 630f048 5be131b 6b01677 630f048 5be131b 630f048 5be131b 630f048 3c93df8 5be131b 630f048 5be131b 630f048 5be131b 3c93df8 630f048 3c93df8 20e903b 3c93df8 20e903b 3c93df8 20e903b 3c93df8 20e903b 3c93df8 20e903b 3c93df8 630f048 3c93df8 630f048 3c93df8 630f048 3c93df8 630f048 3c93df8 630f048 3c93df8 630f048 5820502 630f048 5be131b 3c93df8 630f048 5be131b 3c93df8 630f048 3c93df8 5be131b 3c93df8 20e903b 3c93df8 20e903b 3c93df8 630f048 3c93df8 630f048 3c93df8 630f048 3c93df8 630f048 3c93df8 2fa0283 630f048 441d8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import os
from dotenv import load_dotenv
load_dotenv()
import json
import pandas as pd
import zipfile
import xml.etree.ElementTree as ET
from io import BytesIO
import openpyxl
from openai import OpenAI
import re
import logging
HF_API_KEY = os.getenv("HF_API_KEY")
# Configure logging to write to 'zaoju_logs.log' without using pickle
logging.basicConfig(
filename='extract_po_logs.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
encoding='utf-8'
)
# Default Word XML namespace
DEFAULT_NS = {'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main'}
NS = None # Global variable to store the namespace
def get_namespace(root):
"""Extracts the primary namespace from the XML root element while keeping the default."""
global NS
ns = root.tag.split('}')[0].strip('{')
NS = {'w': ns} if ns else DEFAULT_NS
return NS
# --- Helper Functions for DOCX Processing ---
def extract_text_from_cell(cell):
"""Extracts text from a Word table cell, preserving line breaks and reconstructing split words."""
paragraphs = cell.findall('.//w:p', NS)
lines = []
for paragraph in paragraphs:
# Get all text runs and concatenate their contents
text_runs = [t.text for t in paragraph.findall('.//w:t', NS) if t.text]
line = ''.join(text_runs).strip() # Merge split words properly
if line: # Add only non-empty lines
lines.append(line)
return lines # Return list of lines to preserve line breaks
def clean_spaces(text):
"""
Removes excessive spaces between Chinese characters while preserving spaces in English words.
"""
# Remove spaces **between** Chinese characters but keep English spaces
text = re.sub(r'([\u4e00-\u9fff])\s+([\u4e00-\u9fff])', r'\1\2', text)
return text.strip()
def extract_key_value_pairs(text, target_dict=None):
"""
Extracts multiple key-value pairs from a given text.
- First, split by more than 3 spaces (`\s{3,}`) **only if the next segment contains a `:`.**
- Then, process each segment by splitting at `:` to correctly assign keys and values.
"""
if target_dict is None:
target_dict = {}
text = text.replace(":", ":") # Normalize Chinese colons to English colons
# Step 1: Check if splitting by more than 3 spaces is necessary
segments = re.split(r'(\s{3,})', text) # Use raw string to prevent invalid escape sequence
# Step 2: Process each segment, ensuring we only split if the next part has a `:`
merged_segments = []
temp_segment = ""
for segment in segments:
if ":" in segment: # If segment contains `:`, it's a valid split point
if temp_segment:
merged_segments.append(temp_segment.strip())
temp_segment = ""
merged_segments.append(segment.strip())
else:
temp_segment += " " + segment.strip()
if temp_segment:
merged_segments.append(temp_segment.strip())
# Step 3: Extract key-value pairs correctly
for segment in merged_segments:
if ':' in segment:
key, value = segment.split(':', 1) # Only split at the first colon
key, value = key.strip(), value.strip() # Clean spaces
if key in target_dict:
target_dict[key] += "\n" + value # Append if key already exists
else:
target_dict[key] = value
return target_dict
# --- Table Processing Functions ---
def process_single_column_table(rows):
"""Processes a single-column table and returns the extracted lines as a list."""
single_column_data = []
for row in rows:
cells = row.findall('.//w:tc', NS)
if len(cells) == 1:
cell_lines = extract_text_from_cell(cells[0]) # Extract all lines from the cell
# Append each line directly to the list without splitting
single_column_data.extend(cell_lines)
return single_column_data # Return the list of extracted lines
def process_buyer_seller_table(rows):
"""Processes a two-column buyer-seller table into a structured dictionary using the first row as keys."""
headers = [extract_text_from_cell(cell) for cell in rows[0].findall('.//w:tc', NS)]
if len(headers) != 2:
return None # Not a buyer-seller table
# determine role based on header text
def get_role(header_text, default_role):
header_text = header_text.lower() # Convert to lowercase
if '买方' in header_text or 'buyer' in header_text or '甲方' in header_text:
return 'buyer_info'
elif '卖方' in header_text or 'seller' in header_text or '乙方' in header_text:
return 'seller_info'
else:
return default_role # Default if no keyword is found
# Determine the keys for buyer and seller columns
buyer_key = get_role(headers[0][0], 'buyer_info')
seller_key = get_role(headers[1][0], 'seller_info')
# Initialize the dictionary using the determined keys
buyer_seller_data = {
buyer_key: {},
seller_key: {}
}
for row in rows:
cells = row.findall('.//w:tc', NS)
if len(cells) == 2:
buyer_lines = extract_text_from_cell(cells[0])
seller_lines = extract_text_from_cell(cells[1])
for line in buyer_lines:
extract_key_value_pairs(line, buyer_seller_data[buyer_key])
for line in seller_lines:
extract_key_value_pairs(line, buyer_seller_data[seller_key])
return buyer_seller_data
def process_summary_table(rows):
"""Processes a two-column summary table where keys are extracted as dictionary keys."""
extracted_data = []
for row in rows:
cells = row.findall('.//w:tc', NS)
if len(cells) == 2:
key = " ".join(extract_text_from_cell(cells[0]))
value = " ".join(extract_text_from_cell(cells[1]))
extracted_data.append({key: value})
return extracted_data
def extract_headers(first_row_cells):
"""Extracts unique column headers from the first row of a table."""
headers = []
header_count = {}
for cell in first_row_cells:
cell_text = " ".join(extract_text_from_cell(cell))
grid_span = cell.find('.//w:gridSpan', NS)
col_span = int(grid_span.attrib.get(f'{{{NS["w"]}}}val', '1')) if grid_span is not None else 1
for _ in range(col_span):
# Ensure header uniqueness by appending an index if repeated
if cell_text in header_count:
header_count[cell_text] += 1
unique_header = f"{cell_text}_{header_count[cell_text]}"
else:
header_count[cell_text] = 1
unique_header = cell_text
headers.append(unique_header if unique_header else f"Column_{len(headers) + 1}")
return headers
def process_long_table(rows):
"""Processes a standard table and correctly handles horizontally merged cells."""
if not rows:
return [] # Avoid IndexError
headers = extract_headers(rows[0].findall('.//w:tc', NS))
table_data = []
vertical_merge_tracker = {}
for row in rows[1:]:
row_data = {}
cells = row.findall('.//w:tc', NS)
running_index = 0
for cell in cells:
cell_text = " ".join(extract_text_from_cell(cell))
# Consistent Namespace Handling for Horizontal Merge
grid_span = cell.find('.//w:gridSpan', NS)
grid_span_val = grid_span.attrib.get(f'{{{NS["w"]}}}val') if grid_span is not None else '1'
col_span = int(grid_span_val)
# Handle vertical merge
v_merge = cell.find('.//w:vMerge', NS)
if v_merge is not None:
v_merge_val = v_merge.attrib.get(f'{{{NS["w"]}}}val')
if v_merge_val == 'restart':
vertical_merge_tracker[running_index] = cell_text
else:
# Repeat the value from the previous row's merged cell
cell_text = vertical_merge_tracker.get(running_index, "")
# Repeat the value for horizontally merged cells
start_col = running_index
end_col = running_index + col_span
# Repeat the value for each spanned column
for col in range(start_col, end_col):
key = headers[col] if col < len(headers) else f"Column_{col+1}"
row_data[key] = cell_text
# Update the running index to the end of the merged cell
running_index = end_col
# Fill remaining columns with empty strings to maintain alignment
while running_index < len(headers):
row_data[headers[running_index]] = ""
running_index += 1
table_data.append(row_data)
return table_data
def extract_tables(root):
"""Extracts tables from the DOCX document and returns structured data."""
tables = root.findall('.//w:tbl', NS)
table_data = {}
table_paragraphs = set()
for table_index, table in enumerate(tables, start=1):
rows = table.findall('.//w:tr', NS)
if not rows:
continue # Skip empty tables
for paragraph in table.findall('.//w:p', NS):
table_paragraphs.add(paragraph)
first_row_cells = rows[0].findall('.//w:tc', NS)
num_columns = len(first_row_cells)
if num_columns == 1:
single_column_data = process_single_column_table(rows)
if single_column_data:
table_data[f"table_{table_index}_single_column"] = single_column_data
continue # Skip further processing for this table
summary_start_index = None
for i, row in enumerate(rows):
if len(row.findall('.//w:tc', NS)) == 2:
summary_start_index = i
break
long_table_data = []
summary_data = []
if summary_start_index is not None and summary_start_index > 0:
long_table_data = process_long_table(rows[:summary_start_index])
elif summary_start_index is None:
long_table_data = process_long_table(rows)
if summary_start_index is not None:
is_buyer_seller_table = all(len(row.findall('.//w:tc', NS)) == 2 for row in rows)
if is_buyer_seller_table:
buyer_seller_data = process_buyer_seller_table(rows)
if buyer_seller_data:
table_data[f"table_{table_index}_buyer_seller"] = buyer_seller_data
else:
summary_data = process_summary_table(rows[summary_start_index:])
if long_table_data:
table_data[f"long_table_{table_index}"] = long_table_data
if summary_data:
table_data[f"long_table_{table_index}_summary"] = summary_data
return table_data, table_paragraphs
# --- Non-Table Processing Functions ---
def extract_text_outside_tables(root, table_paragraphs):
"""Extracts text from paragraphs outside tables in the document."""
extracted_text = []
for paragraph in root.findall('.//w:p', NS):
if paragraph in table_paragraphs:
continue # Skip paragraphs inside tables
texts = [t.text.strip() for t in paragraph.findall('.//w:t', NS) if t.text]
line = clean_spaces(' '.join(texts).replace(':',':')) # Clean colons and spaces
if ':' in line:
extracted_text.append(line)
return extracted_text
# --- Main Extraction Functions ---
def extract_docx_as_xml(file_bytes, save_xml=False, xml_filename="document.xml"):
# Ensure file_bytes is at the start position
file_bytes.seek(0)
with zipfile.ZipFile(file_bytes, 'r') as docx:
with docx.open('word/document.xml') as xml_file:
xml_content = xml_file.read().decode('utf-8')
if save_xml:
with open(xml_filename, "w", encoding="utf-8") as f:
f.write(xml_content)
return xml_content
def xml_to_json(xml_content, save_json=False, json_filename="extracted_data.json"):
tree = ET.ElementTree(ET.fromstring(xml_content))
root = tree.getroot()
table_data, table_paragraphs = extract_tables(root)
extracted_data = table_data
extracted_data["non_table_data"] = extract_text_outside_tables(root, table_paragraphs)
if save_json:
with open(json_filename, "w", encoding="utf-8") as f:
json.dump(extracted_data, f, ensure_ascii=False, indent=4)
return json.dumps(extracted_data, ensure_ascii=False, indent=4)
def deepseek_extract_contract_summary(json_data, save_json=False, json_filename="contract_summary.json"):
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
# Step 1: Convert JSON string to Python dictionary
contract_data = json.loads(json_data)
# Step 2: Remove keys that contain "long_table"
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" not in key}
# Step 3: Convert back to JSON string (if needed)
json_output = json.dumps(contract_data, ensure_ascii=False, indent=4)
prompt = """You are given a contract in JSON format. Extract the following information:
# Response Format
Return the extracted information as a structured JSON in the exact format shown below (Note: Do not repeat any keys, if unsure leave the value empty):
{
"合同编号":
"接收人": (注意:不是买家必须是接收人,不是一个公司而是一个人)
"Recipient":
"接收地": (注意:不是交货地点是目的港,只写中文,英文写在 place of receipt)
"Place of receipt": (只写英文, 如果接收地/目的港/Port of destination 有英文可填在这里)
"供应商":
"币种": (主要用的货币,填英文缩写。GNF一般是为了方便而转换出来的, 除非只有GNF,GNF一般不是主要币种。)
"供货日期": (如果合同里有写才填,不要自己推理出日期,必须是一个日期,而不是天数)
}
Contract data in JSON format:""" + f"""
{json_output}"""
messages = [
{
"role": "user",
"content": prompt
}
]
# Deepseek R1 Distilled Qwen 2.5 14B --------------------------------
client = OpenAI(
base_url="https://router.huggingface.co/novita",
api_key=HF_API_KEY,
)
completion = client.chat.completions.create(
model="deepseek/deepseek-r1-distill-qwen-14b",
messages=messages,
temperature=0.5,
)
# Deepseek V3 --------------------------------
# client = OpenAI(
# base_url="https://router.huggingface.co/novita",
# api_key=HF_API_KEY,
# )
# completion = client.chat.completions.create(
# model="deepseek/deepseek_v3",
# messages=messages,
# temperature=0.1,
# )
# Qwen 2.5 7B --------------------------------
# client = OpenAI(
# base_url="https://router.huggingface.co/together",
# api_key=HF_API_KEY,
# )
# completion = client.chat.completions.create(
# model="Qwen/Qwen2.5-7B-Instruct-Turbo",
# messages=messages,
# )
think_text = re.findall(r"<think>(.*?)</think>", completion.choices[0].message.content, flags=re.DOTALL)
if think_text:
print(f"Thought Process: {think_text}")
logging.info(f"Think text: {think_text}")
contract_summary = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL) # Remove think
contract_summary = re.sub(r"^```json\n|```$", "", contract_summary, flags=re.DOTALL) # Remove ```
if save_json:
with open(json_filename, "w", encoding="utf-8") as f:
f.write(contract_summary)
return json.dumps(contract_summary, ensure_ascii=False, indent=4)
def deepseek_extract_price_list(json_data):
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
# Step 1: Convert JSON string to Python dictionary
contract_data = json.loads(json_data)
# Step 2: Remove keys that contain "long_table"
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" in key}
# Step 3: Convert back to JSON string (if needed)
json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4)
prompt = """You are given a price list in JSON format. Extract the following information in CSV format:
# Response Format
Return the extracted information as a CSV in the exact format shown below:
物料名称, 物料名称(英文), 物料规格, 采购数量, 单位, 单价, 计划号
JSON data:""" + f"""
{json_output}"""
messages = [
{
"role": "user",
"content": prompt
}
]
client = OpenAI(
base_url="https://router.huggingface.co/novita",
api_key=HF_API_KEY,
)
completion = client.chat.completions.create(
model="deepseek/deepseek-r1-distill-qwen-14b",
messages=messages,
)
price_list = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL)
price_list = re.sub(r"^```json\n|```$", "", price_list, flags=re.DOTALL)
def json_to_excel(contract_summary, json_data, excel_path):
"""Converts extracted JSON tables to an Excel file."""
# Correctly parse the JSON string
contract_summary_json = json.loads(json.loads(contract_summary))
contract_summary_df = pd.DataFrame([contract_summary_json])
# Ensure json_data is a dictionary
if isinstance(json_data, str):
json_data = json.loads(json_data)
long_tables = [pd.DataFrame(table) for key, table in json_data.items() if "long_table" in key and "summary" not in key]
long_table = long_tables[-1] if long_tables else pd.DataFrame()
with pd.ExcelWriter(excel_path) as writer:
contract_summary_df.to_excel(writer, sheet_name="Contract Summary", index=False)
long_table.to_excel(writer, sheet_name="Price List", index=False)
#--- Extract PO ------------------------------
def extract_po(docx_path):
"""Processes a single .docx file, extracts tables, formats with OpenAI, and saves as an Excel file."""
if not os.path.exists(docx_path) or not docx_path.endswith(".docx"):
raise ValueError(f"Invalid file: {docx_path}")
# Read the .docx file as bytes
with open(docx_path, "rb") as f:
docx_bytes = BytesIO(f.read())
# Step 1: Extract XML content from DOCX
print("Extracting Docs data to XML...")
xml_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_document.xml"
xml_file = extract_docx_as_xml(docx_bytes, save_xml=True, xml_filename=xml_filename)
get_namespace(ET.fromstring(xml_file))
# Step 2: Extract tables from DOCX and save JSON
print("Extracting XML data to JSON...")
json_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_extracted_data.json"
extracted_data = xml_to_json(xml_file, save_json=True, json_filename=json_filename)
# Step 2: Process JSON with OpenAI to get structured output
print("Processing JSON data with AI...")
contract_summary_filename = os.path.splitext(os.path.basename(docx_path))[0] + "_contract_summary.json"
contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=True, json_filename=contract_summary_filename)
# Step 3: Save formatted data as Excel
print("Converting AI Generated JSON to Excel...")
excel_output_path = os.path.splitext(docx_path)[0] + ".xlsx"
json_to_excel(contract_summary, extracted_data, excel_output_path)
print(f"Excel file saved at: {excel_output_path}")
# Logging
log = f"""Results:
Contract Summary: {contract_summary},
RAW Extracted Data: {extracted_data},
XML Preview: {xml_file[:1000]}"""
print(log)
logging.info(f"""{log}""")
return excel_output_path
# Example Usage
# extract_po("test-contract-converted.docx")
# extract_po("test-contract.docx")
# Gradio Interface ------------------------------
import gradio as gr
from gradio.themes.base import Base
interface = gr.Interface(
fn=extract_po,
title="PO Extractor 买卖合同数据提取",
inputs=gr.File(label="买卖合同 (.docx)"),
outputs=gr.File(label="数据提取结果 (.xlsx)"),
flagging_mode="never",
theme=Base()
)
interface.launch()
|