File size: 7,472 Bytes
7a0f03d 9fe2e05 defb0a9 dc99e66 2c4dca2 dc99e66 9ebd8d9 0e02e4f 5985f75 128e483 e3f5de5 ab566ee 6564690 7a0f03d 2c08c25 e21f87d 2c08c25 dc99e66 41af8de e3f5de5 4dfc654 2c4dca2 7ee9982 16794cc 1e42623 4dfc654 2c4dca2 1e42623 7ee9982 2c4dca2 db33911 c497f97 5985f75 5054e30 5985f75 b7b439e 2c4dca2 ab566ee 2c4dca2 49a9882 e21f87d 49a9882 5985f75 2c4dca2 680827f 49a9882 680827f 5985f75 2c4dca2 9fe2e05 7a0f03d c9690b4 9fe2e05 2c4dca2 dc99e66 9fe2e05 2c4dca2 9fe2e05 128e483 2c4dca2 128e483 7a0f03d 2c4dca2 dc99e66 9587c62 9fe2e05 128e483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain.chains import RetrievalQA
from langchain_core.retrievers import BaseRetriever
from langchain_core.prompts import PromptTemplate
from typing import List
from pydantic import Field
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: url("./military_bg.jpeg") no-repeat center center fixed;
background-size: cover;
backdrop-filter: blur(2px);
}
.stChatMessage {
background-color: rgba(255,255,255,0.8);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 16px;
margin-bottom: 15px;
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
animation: fadeIn 0.4s ease-in-out;
}
.stTextInput > div > input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 10px;
padding: 8px 20px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 20px;
margin-bottom: 40px;
background-color: rgba(255, 255, 255, 0.75);
padding: 20px;
border-radius: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
.header-text h1 {
font-size: 42px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 18px;
color: #34495e;
margin-top: 8px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
</style>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 0.1, 1])
with col2:
st.image("army.png", width=240)
st.markdown("""
<div class="header-text">
<h1>چت بات توانا</h1>
<div class="subtitle">دستیار هوشمند برای تصمیمگیری در میدان نبرد</div>
</div>
""", unsafe_allow_html=True)
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def get_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = PyPDFLoader('test1.pdf')
documents = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=128)
texts = []
for doc in documents:
texts.extend(splitter.split_text(doc.page_content))
# مدل امبدینگ
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# تولید امبدینگها
embeddings = model.encode(texts, convert_to_numpy=True)
# ساخت ایندکس Faiss
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
docs = [{"text": text} for text in texts]
return docs, embeddings, index, model
# ----------------- تعریف LLM -----------------
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
documents: List[dict] = Field(...)
embeddings: np.ndarray = Field(...)
index: faiss.Index
model: SentenceTransformer
def _get_relevant_documents(self, query: str) -> List[Document]:
query_embedding = self.model.encode([query], convert_to_numpy=True)
_, indices = self.index.search(query_embedding, 5)
results = []
for i in indices[0]:
results.append(Document(page_content=self.documents[i]['text']))
return results
# ----------------- بارگذاری دیتا -----------------
documents, embeddings, index, model = get_pdf_index()
retriever = SimpleRetriever(
documents=documents,
embeddings=embeddings,
index=index,
model=model
)
custom_prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
شما فقط مجاز هستید از اطلاعات زیر پاسخ دهید. اگر اطلاعات لازم برای پاسخ دقیق وجود ندارد، لطفاً تلاش کنید تا نزدیکترین و مفیدترین پاسخ را از اطلاعات موجود پیدا کنید. در صورتی که اطلاعات مورد نظر وجود ندارد، بهجای دادن جواب نادرست، بگویید که اطلاعات مورد نیاز را ندارید یا نمیتوانید پاسخ دقیقی بدهید.
اطلاعات:
{context}
سوال:
{question}
پاسخ دقیق و کامل بده:
"""
)
# ----------------- ساخت Chain -----------------
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
chain_type_kwargs={"prompt": custom_prompt}
)
# ----------------- چت استیت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی کاربر -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخدهی مدل -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
try:
response = qa_chain.run(st.session_state.pending_prompt)
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|