Update app.py
Browse files
app.py
CHANGED
@@ -7,15 +7,18 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
7 |
from langchain.schema import Document as LangchainDocument
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.llms import OpenAI
|
10 |
-
from groq import Groq
|
11 |
import torch
|
12 |
from langchain_core.retrievers import BaseRetriever
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# ----------------- تنظیمات صفحه -----------------
|
15 |
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
|
16 |
|
17 |
# ----------------- بارگذاری مدل FarsiBERT -----------------
|
18 |
-
model_name = "HooshvareLab/bert-fa-zwnj-base"
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
model = AutoModel.from_pretrained(model_name)
|
21 |
|
@@ -26,7 +29,6 @@ def build_pdf_index():
|
|
26 |
loader = PyPDFLoader("test1.pdf")
|
27 |
pages = loader.load()
|
28 |
|
29 |
-
# تکهتکه کردن متن PDF
|
30 |
splitter = RecursiveCharacterTextSplitter(
|
31 |
chunk_size=500,
|
32 |
chunk_overlap=50
|
@@ -36,42 +38,27 @@ def build_pdf_index():
|
|
36 |
for page in pages:
|
37 |
texts.extend(splitter.split_text(page.page_content))
|
38 |
|
39 |
-
# تبدیل به Document
|
40 |
documents = [LangchainDocument(page_content=t) for t in texts]
|
41 |
|
42 |
-
# استفاده از FarsiBERT برای تولید امبدینگ
|
43 |
embeddings = []
|
44 |
for doc in documents:
|
45 |
inputs = tokenizer(doc.page_content, return_tensors="pt", padding=True, truncation=True)
|
46 |
with torch.no_grad():
|
47 |
outputs = model(**inputs)
|
48 |
-
embeddings.append(outputs.last_hidden_state.mean(dim=1).numpy())
|
49 |
|
50 |
-
# به جای FAISS، فقط لیست امبدینگها را برمیگردانیم
|
51 |
return documents, embeddings
|
52 |
|
53 |
-
# ----------------- ساختن Index از PDF -----------------
|
54 |
-
|
55 |
# ----------------- تعریف LLM از Groq -----------------
|
56 |
groq_api_key = "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"
|
57 |
-
client = Groq(api_key=groq_api_key)
|
58 |
-
|
59 |
-
class GroqLLM(OpenAI):
|
60 |
-
def __init__(self, api_key, model_name):
|
61 |
-
super().__init__(
|
62 |
-
openai_api_key=api_key,
|
63 |
-
model_name=model_name,
|
64 |
-
base_url="https://api.groq.com" # فقط همین
|
65 |
-
)
|
66 |
-
|
67 |
-
# ساخت مدل
|
68 |
-
llm = GroqLLM(api_key=groq_api_key, model_name="deepseek-r1-distill-llama-70b")
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
|
|
75 |
class SimpleRetriever(BaseRetriever):
|
76 |
documents: List[Document] = Field(...)
|
77 |
embeddings: List = Field(...)
|
@@ -89,16 +76,19 @@ class SimpleRetriever(BaseRetriever):
|
|
89 |
|
90 |
ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
|
91 |
return [doc for _, doc in ranked_docs[:5]]
|
|
|
|
|
92 |
documents, embeddings = build_pdf_index()
|
93 |
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
|
94 |
|
95 |
-
#
|
96 |
chain = RetrievalQA.from_chain_type(
|
97 |
llm=llm,
|
98 |
retriever=retriever,
|
99 |
chain_type="stuff",
|
100 |
input_key="question"
|
101 |
)
|
|
|
102 |
# ----------------- استیت برای چت -----------------
|
103 |
if 'messages' not in st.session_state:
|
104 |
st.session_state.messages = []
|
@@ -119,23 +109,20 @@ if prompt:
|
|
119 |
st.session_state.pending_prompt = prompt
|
120 |
st.rerun()
|
121 |
|
122 |
-
# ----------------- پاسخ مدل
|
123 |
if st.session_state.pending_prompt:
|
124 |
with st.chat_message('ai'):
|
125 |
thinking = st.empty()
|
126 |
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
|
127 |
|
128 |
try:
|
129 |
-
# گرفتن جواب فقط از PDF
|
130 |
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
|
131 |
answer = response.strip()
|
132 |
-
|
133 |
except Exception as e:
|
134 |
answer = f"خطا در پاسخدهی: {str(e)}"
|
135 |
|
136 |
thinking.empty()
|
137 |
|
138 |
-
# انیمیشن تایپ پاسخ
|
139 |
full_response = ""
|
140 |
placeholder = st.empty()
|
141 |
for word in answer.split():
|
|
|
7 |
from langchain.schema import Document as LangchainDocument
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.llms import OpenAI
|
|
|
10 |
import torch
|
11 |
from langchain_core.retrievers import BaseRetriever
|
12 |
+
from langchain_core.documents import Document
|
13 |
+
from typing import List
|
14 |
+
from pydantic import Field
|
15 |
+
from groq import Groq
|
16 |
|
17 |
# ----------------- تنظیمات صفحه -----------------
|
18 |
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
|
19 |
|
20 |
# ----------------- بارگذاری مدل FarsiBERT -----------------
|
21 |
+
model_name = "HooshvareLab/bert-fa-zwnj-base"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
model = AutoModel.from_pretrained(model_name)
|
24 |
|
|
|
29 |
loader = PyPDFLoader("test1.pdf")
|
30 |
pages = loader.load()
|
31 |
|
|
|
32 |
splitter = RecursiveCharacterTextSplitter(
|
33 |
chunk_size=500,
|
34 |
chunk_overlap=50
|
|
|
38 |
for page in pages:
|
39 |
texts.extend(splitter.split_text(page.page_content))
|
40 |
|
|
|
41 |
documents = [LangchainDocument(page_content=t) for t in texts]
|
42 |
|
|
|
43 |
embeddings = []
|
44 |
for doc in documents:
|
45 |
inputs = tokenizer(doc.page_content, return_tensors="pt", padding=True, truncation=True)
|
46 |
with torch.no_grad():
|
47 |
outputs = model(**inputs)
|
48 |
+
embeddings.append(outputs.last_hidden_state.mean(dim=1).numpy())
|
49 |
|
|
|
50 |
return documents, embeddings
|
51 |
|
|
|
|
|
52 |
# ----------------- تعریف LLM از Groq -----------------
|
53 |
groq_api_key = "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"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# مستقیماً از OpenAI بدون کلاس اضافه
|
56 |
+
llm = OpenAI(
|
57 |
+
openai_api_key=groq_api_key,
|
58 |
+
model_name="deepseek-r1-distill-llama-70b"
|
59 |
+
)
|
60 |
|
61 |
+
# ----------------- تعریف SimpleRetriever -----------------
|
62 |
class SimpleRetriever(BaseRetriever):
|
63 |
documents: List[Document] = Field(...)
|
64 |
embeddings: List = Field(...)
|
|
|
76 |
|
77 |
ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
|
78 |
return [doc for _, doc in ranked_docs[:5]]
|
79 |
+
|
80 |
+
# ----------------- ساخت Index -----------------
|
81 |
documents, embeddings = build_pdf_index()
|
82 |
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
|
83 |
|
84 |
+
# ----------------- ساخت Chain -----------------
|
85 |
chain = RetrievalQA.from_chain_type(
|
86 |
llm=llm,
|
87 |
retriever=retriever,
|
88 |
chain_type="stuff",
|
89 |
input_key="question"
|
90 |
)
|
91 |
+
|
92 |
# ----------------- استیت برای چت -----------------
|
93 |
if 'messages' not in st.session_state:
|
94 |
st.session_state.messages = []
|
|
|
109 |
st.session_state.pending_prompt = prompt
|
110 |
st.rerun()
|
111 |
|
112 |
+
# ----------------- پاسخ مدل -----------------
|
113 |
if st.session_state.pending_prompt:
|
114 |
with st.chat_message('ai'):
|
115 |
thinking = st.empty()
|
116 |
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
|
117 |
|
118 |
try:
|
|
|
119 |
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
|
120 |
answer = response.strip()
|
|
|
121 |
except Exception as e:
|
122 |
answer = f"خطا در پاسخدهی: {str(e)}"
|
123 |
|
124 |
thinking.empty()
|
125 |
|
|
|
126 |
full_response = ""
|
127 |
placeholder = st.empty()
|
128 |
for word in answer.split():
|