Update app.py
Browse files
app.py
CHANGED
@@ -2,98 +2,70 @@ import os
|
|
2 |
import time
|
3 |
import streamlit as st
|
4 |
from groq import Groq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# ----------------- تنظیمات صفحه -----------------
|
7 |
-
st.set_page_config(page_title="چتبات ارتش -
|
8 |
-
|
9 |
-
# استایل فارسی و بکگراند
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
margin: 0;
|
63 |
-
font-weight: bold;
|
64 |
-
}
|
65 |
-
.subtitle {
|
66 |
-
font-size: 18px;
|
67 |
-
color: #34495e;
|
68 |
-
margin-top: 8px;
|
69 |
-
}
|
70 |
-
@keyframes fadeIn {
|
71 |
-
from { opacity: 0; transform: translateY(10px); }
|
72 |
-
to { opacity: 1; transform: translateY(0); }
|
73 |
-
}
|
74 |
-
</style>
|
75 |
-
""", unsafe_allow_html=True)
|
76 |
-
|
77 |
-
# ----------------- لوگو و عنوان -----------------
|
78 |
-
col1, col2, col3 = st.columns([1, 1, 1])
|
79 |
-
with col2:
|
80 |
-
st.image("army.png", width=240)
|
81 |
-
|
82 |
-
st.markdown("""
|
83 |
-
<div class="header-text">
|
84 |
-
<h1>چتبات ارتش</h1>
|
85 |
-
<div class="subtitle">دستیار هوشمند میدان نبرد - Powered by Groq</div>
|
86 |
-
</div>
|
87 |
-
""", unsafe_allow_html=True)
|
88 |
-
|
89 |
-
# ----------------- اتصال به Groq -----------------
|
90 |
-
api_key = "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"
|
91 |
-
|
92 |
-
client = Groq(api_key=api_key)
|
93 |
-
|
94 |
-
selected_model = "llama3-70b-8192" # بهترین مدل Groq
|
95 |
-
|
96 |
-
# ----------------- استیت ذخیرهی پیامها -----------------
|
97 |
if 'messages' not in st.session_state:
|
98 |
st.session_state.messages = []
|
99 |
|
@@ -106,28 +78,23 @@ for msg in st.session_state.messages:
|
|
106 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
107 |
|
108 |
# ----------------- ورودی چت -----------------
|
109 |
-
prompt = st.chat_input("
|
110 |
|
111 |
if prompt:
|
112 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
113 |
st.session_state.pending_prompt = prompt
|
114 |
st.rerun()
|
115 |
|
116 |
-
# ----------------- پاسخ
|
117 |
if st.session_state.pending_prompt:
|
118 |
with st.chat_message('ai'):
|
119 |
thinking = st.empty()
|
120 |
-
thinking.markdown("🤖 در حال فکر
|
121 |
|
122 |
try:
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
{"role": "user", "content": st.session_state.pending_prompt}
|
127 |
-
],
|
128 |
-
model=selected_model,
|
129 |
-
)
|
130 |
-
answer = chat_completion.choices[0].message.content.strip()
|
131 |
|
132 |
except Exception as e:
|
133 |
answer = f"خطا در پاسخدهی: {str(e)}"
|
|
|
2 |
import time
|
3 |
import streamlit as st
|
4 |
from groq import Groq
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.schema import Document as LangchainDocument
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from langchain.llms import OpenAI
|
12 |
|
13 |
# ----------------- تنظیمات صفحه -----------------
|
14 |
+
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
|
15 |
+
|
16 |
+
# استایل فارسی و بکگراند (مثل قبل...)
|
17 |
+
|
18 |
+
# ----------------- تعریف کلید API -----------------
|
19 |
+
groq_api_key = "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"
|
20 |
+
|
21 |
+
# ----------------- لود PDF و ساخت ایندکس -----------------
|
22 |
+
@st.cache_resource
|
23 |
+
def build_pdf_index():
|
24 |
+
with st.spinner('📄 در حال پردازش فایل PDF...'):
|
25 |
+
loader = PyPDFLoader("test1.pdf")
|
26 |
+
pages = loader.load()
|
27 |
+
|
28 |
+
# تکهتکه کردن متن PDF
|
29 |
+
splitter = RecursiveCharacterTextSplitter(
|
30 |
+
chunk_size=500,
|
31 |
+
chunk_overlap=50
|
32 |
+
)
|
33 |
+
|
34 |
+
texts = []
|
35 |
+
for page in pages:
|
36 |
+
texts.extend(splitter.split_text(page.page_content))
|
37 |
+
|
38 |
+
# تبدیل به Document
|
39 |
+
documents = [LangchainDocument(page_content=t) for t in texts]
|
40 |
+
|
41 |
+
# استفاده از HuggingFaceEmbedding محلی برای FAISS
|
42 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
43 |
+
|
44 |
+
vectordb = FAISS.from_documents(documents, embedding=embeddings)
|
45 |
+
|
46 |
+
return vectordb
|
47 |
+
|
48 |
+
# ----------------- ساختن Index از PDF -----------------
|
49 |
+
index = build_pdf_index()
|
50 |
+
|
51 |
+
# ----------------- تعریف LLM Groq -----------------
|
52 |
+
client = Groq(api_key=groq_api_key)
|
53 |
+
|
54 |
+
class GroqLLM(OpenAI):
|
55 |
+
def __init__(self, api_key, model_name):
|
56 |
+
super().__init__(openai_api_key=api_key, model_name=model_name, base_url="https://api.groq.com/openai/v1")
|
57 |
+
|
58 |
+
llm = GroqLLM(api_key=groq_api_key, model_name="llama3-70b-8192")
|
59 |
+
|
60 |
+
# ----------------- Retrieval Chain -----------------
|
61 |
+
chain = RetrievalQA.from_chain_type(
|
62 |
+
llm=llm,
|
63 |
+
retriever=index.as_retriever(),
|
64 |
+
chain_type="stuff",
|
65 |
+
input_key="question"
|
66 |
+
)
|
67 |
+
|
68 |
+
# ----------------- استیت برای چت -----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
if 'messages' not in st.session_state:
|
70 |
st.session_state.messages = []
|
71 |
|
|
|
78 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
79 |
|
80 |
# ----------------- ورودی چت -----------------
|
81 |
+
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
|
82 |
|
83 |
if prompt:
|
84 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
85 |
st.session_state.pending_prompt = prompt
|
86 |
st.rerun()
|
87 |
|
88 |
+
# ----------------- پاسخ مدل فقط از روی PDF -----------------
|
89 |
if st.session_state.pending_prompt:
|
90 |
with st.chat_message('ai'):
|
91 |
thinking = st.empty()
|
92 |
+
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
|
93 |
|
94 |
try:
|
95 |
+
# گرفتن جواب فقط از PDF
|
96 |
+
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
|
97 |
+
answer = response.strip()
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
except Exception as e:
|
100 |
answer = f"خطا در پاسخدهی: {str(e)}"
|