Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,7 @@ from typing import List
|
|
13 |
from pydantic import Field
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
import numpy as np
|
|
|
16 |
|
17 |
# ----------------- تنظیمات صفحه -----------------
|
18 |
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
|
@@ -95,11 +96,6 @@ st.markdown("""
|
|
95 |
</div>
|
96 |
""", unsafe_allow_html=True)
|
97 |
|
98 |
-
# ----------------- بارگذاری مدل FarsiBERT -----------------
|
99 |
-
# model_name = "HooshvareLab/bert-fa-zwnj-base"
|
100 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
101 |
-
# model = AutoModel.from_pretrained(model_name)
|
102 |
-
|
103 |
# ----------------- لود PDF و ساخت ایندکس -----------------
|
104 |
|
105 |
@st.cache_resource
|
@@ -109,7 +105,7 @@ def build_pdf_index():
|
|
109 |
pages = loader.load()
|
110 |
|
111 |
splitter = RecursiveCharacterTextSplitter(
|
112 |
-
chunk_size=
|
113 |
chunk_overlap=50
|
114 |
)
|
115 |
|
@@ -119,7 +115,7 @@ def build_pdf_index():
|
|
119 |
|
120 |
documents = [LangchainDocument(page_content=t) for t in texts]
|
121 |
|
122 |
-
sentence_model = SentenceTransformer(
|
123 |
|
124 |
progress_bar = st.progress(0)
|
125 |
total_docs = len(documents)
|
@@ -140,12 +136,13 @@ def build_pdf_index():
|
|
140 |
progress_bar.empty()
|
141 |
embeddings = np.array(embeddings)
|
142 |
|
143 |
-
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
# groq_api_key = "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"
|
147 |
|
148 |
-
#
|
149 |
llm = ChatOpenAI(
|
150 |
base_url="https://api.together.xyz/v1",
|
151 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
@@ -156,24 +153,22 @@ llm = ChatOpenAI(
|
|
156 |
class SimpleRetriever(BaseRetriever):
|
157 |
documents: List[Document] = Field(...)
|
158 |
embeddings: List[np.ndarray] = Field(...)
|
|
|
159 |
|
160 |
def _get_relevant_documents(self, query: str) -> List[Document]:
|
161 |
-
#
|
162 |
-
sentence_model = SentenceTransformer(
|
163 |
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
|
164 |
|
165 |
-
#
|
166 |
-
|
167 |
-
|
168 |
-
# ترتیبدهی اسناد بر اساس شباهتها
|
169 |
-
ranked_docs = np.argsort(similarities)[::-1]
|
170 |
|
171 |
-
#
|
172 |
-
return [self.documents[i] for i in
|
173 |
|
174 |
# ----------------- ساخت Index -----------------
|
175 |
-
documents, embeddings = build_pdf_index()
|
176 |
-
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
|
177 |
|
178 |
# ----------------- ساخت Chain -----------------
|
179 |
chain = RetrievalQA.from_chain_type(
|
|
|
13 |
from pydantic import Field
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
import numpy as np
|
16 |
+
import faiss
|
17 |
|
18 |
# ----------------- تنظیمات صفحه -----------------
|
19 |
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
|
|
|
96 |
</div>
|
97 |
""", unsafe_allow_html=True)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
# ----------------- لود PDF و ساخت ایندکس -----------------
|
100 |
|
101 |
@st.cache_resource
|
|
|
105 |
pages = loader.load()
|
106 |
|
107 |
splitter = RecursiveCharacterTextSplitter(
|
108 |
+
chunk_size=128,
|
109 |
chunk_overlap=50
|
110 |
)
|
111 |
|
|
|
115 |
|
116 |
documents = [LangchainDocument(page_content=t) for t in texts]
|
117 |
|
118 |
+
sentence_model = SentenceTransformer('HooshvareLab/bert-fa-zwnj-base')
|
119 |
|
120 |
progress_bar = st.progress(0)
|
121 |
total_docs = len(documents)
|
|
|
136 |
progress_bar.empty()
|
137 |
embeddings = np.array(embeddings)
|
138 |
|
139 |
+
# ساخت ایندکس با استفاده از FAISS برای جستجو سریعتر
|
140 |
+
index = faiss.IndexFlatL2(embeddings.shape[1]) # استفاده از L2 distance
|
141 |
+
index.add(embeddings) # اضافه کردن بردارها به ایندکس FAISS
|
142 |
|
143 |
+
return documents, embeddings, index
|
|
|
144 |
|
145 |
+
# ----------------- تعریف LLM از Groq -----------------
|
146 |
llm = ChatOpenAI(
|
147 |
base_url="https://api.together.xyz/v1",
|
148 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
|
|
153 |
class SimpleRetriever(BaseRetriever):
|
154 |
documents: List[Document] = Field(...)
|
155 |
embeddings: List[np.ndarray] = Field(...)
|
156 |
+
index: faiss.Index
|
157 |
|
158 |
def _get_relevant_documents(self, query: str) -> List[Document]:
|
159 |
+
# تبدیل پرسش به بردار
|
160 |
+
sentence_model = SentenceTransformer('HooshvareLab/bert-fa-zwnj-base')
|
161 |
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
|
162 |
|
163 |
+
# جستجو در ایندکس FAISS
|
164 |
+
_, indices = self.index.search(np.expand_dims(query_embedding, axis=0), 5) # پیدا کردن 5 سند مشابه
|
|
|
|
|
|
|
165 |
|
166 |
+
# بازگشت به 5 سند مرتبطترین
|
167 |
+
return [self.documents[i] for i in indices[0]]
|
168 |
|
169 |
# ----------------- ساخت Index -----------------
|
170 |
+
documents, embeddings, index = build_pdf_index()
|
171 |
+
retriever = SimpleRetriever(documents=documents, embeddings=embeddings, index=index)
|
172 |
|
173 |
# ----------------- ساخت Chain -----------------
|
174 |
chain = RetrievalQA.from_chain_type(
|