File size: 6,119 Bytes
7a0f03d
9fe2e05
 
defb0a9
dc99e66
 
2c4dca2
dc99e66
9ebd8d9
0e02e4f
5985f75
 
128e483
e3f5de5
ab566ee
a0c39f3
 
4683112
2e3de71
 
c03287b
 
4683112
6564690
7a0f03d
2c08c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b84e65e
 
 
 
 
 
 
0bcc41f
b84e65e
 
 
4683112
ff663c0
 
c03287b
e3f5de5
 
 
c03287b
162eb65
59fbf80
 
 
 
 
 
 
 
 
 
c03287b
2e3de71
2c4dca2
 
b8fecc5
49a9882
5606c57
 
 
 
49a9882
 
b8fecc5
680827f
b8fecc5
 
 
680827f
5985f75
9fe2e05
 
 
 
 
 
c9690b4
 
 
9fe2e05
b8fecc5
9fe2e05
 
 
 
 
 
 
 
128e483
2c4dca2
128e483
b8fecc5
 
 
 
9fe2e05
128e483
 
 
b8fecc5
128e483
 
 
 
 
 
 
75aebbc
e595e00
c23ccf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain.chains import RetrievalQA
from langchain_core.retrievers import BaseRetriever
from langchain_core.prompts import PromptTemplate
from typing import List
from pydantic import Field
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings

from transformers import AutoTokenizer



# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide")

st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: url("./military_bg.jpeg") no-repeat center center fixed;
        background-size: cover;
        backdrop-filter: blur(2px);
    }
    .stChatMessage {
        background-color: rgba(255,255,255,0.8);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 15px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        animation: fadeIn 0.4s ease-in-out;
    }
    .stTextInput > div > input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 10px;
        padding: 8px 20px;
        transition: 0.3s;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 20px;
        margin-bottom: 40px;
        background-color: rgba(255, 255, 255, 0.75);
        padding: 20px;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .header-text h1 {
        font-size: 42px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 18px;
        color: #34495e;
        margin-top: 8px;
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    </style>
""", unsafe_allow_html=True)

col1, col2, col3 = st.columns([1, 0.2, 1])
with col2:
    st.image("army.png", width=240)

st.markdown("""
    <div class="header-text">
        <h1>چت‌ بات توانا</h1>
        <div class="subtitle">دستیار هوشمند</div>
    </div>
""", unsafe_allow_html=True)

# ----------------- لود PDF و ساخت ایندکس -----------------
# tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/gpt2-fa")
# tokenizer.pad_token = tokenizer.eos_token  # یا می‌توانید این خط را برای توکن جدید فعال کنید: tokenizer.add_special_tokens({'pad_token': '[PAD]'})

@st.cache_resource
def get_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        pdf_loader = PyPDFLoader('test1.pdf')
        # embeddings = SentenceTransformer("Thomslionel/embedings")
        # embeddings = HuggingFaceInstructEmbeddings(model_name="aidal/Persian-Mistral-7B")

        embeddings = TogetherEmbeddings(
            model_name="togethercomputer/m2-bert-80M-8k-retrieval",
            api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"




        )
        index = VectorstoreIndexCreator(embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=128)).from_loaders([pdf_loader])
        return index

# ----------------- بارگذاری دیتا -----------------
index = get_pdf_index()

llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)

chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type='stuff',
    retriever=index.vectorstore.as_retriever(),
    input_key='question'
)

if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

prompt = st.chat_input("چطور می‌تونم کمک کنم؟")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن...")

        response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
        answer = response.split("Helpful Answer:")[-1].strip()
        if not answer:
            answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."

        thinking.empty()
        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None