File size: 5,742 Bytes
d287817 dc196f7 5b3a336 dc196f7 324f762 5b3a336 217583a dc196f7 a3d3b71 dc196f7 a3d3b71 dc196f7 22ba7d6 e3f5de5 dc196f7 2cee9ee 324f762 22ba7d6 324f762 22ba7d6 8f34ab2 dc196f7 99ed84f 5606c57 dc196f7 49a9882 b2c45d8 dc196f7 5985f75 9fe2e05 c9690b4 9fe2e05 dc196f7 9fe2e05 128e483 b2c45d8 128e483 dc196f7 b2c45d8 b8fecc5 b2c45d8 9fe2e05 128e483 b8fecc5 128e483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: url("./military_bg.jpeg") no-repeat center center fixed;
background-size: cover;
backdrop-filter: blur(2px);
}
.stChatMessage {
background-color: rgba(255,255,255,0.8);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 16px;
margin-bottom: 15px;
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
animation: fadeIn 0.4s ease-in-out;
}
.stTextInput > div > input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 10px;
padding: 8px 20px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 20px;
margin-bottom: 40px;
background-color: rgba(255, 255, 255, 0.75);
padding: 20px;
border-radius: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
.header-text h1 {
font-size: 42px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 18px;
color: #34495e;
margin-top: 8px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
</style>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 0.2, 1])
with col2:
st.image("army.png", width=240)
st.markdown("""
<div class="header-text">
<h1>چت بات توانا</h1>
<div class="subtitle">رزم یار ارتش</div>
</div>
""", unsafe_allow_html=True)
# ----------------- لود PDF و ساخت ایندکس -----------------
class TogetherEmbeddings(Embeddings):
def __init__(self, model_name: str, api_key: str):
self.model_name = model_name
self.client = Together(api_key=api_key)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
response = self.client.embeddings.create(model=self.model_name, input=texts)
return [item.embedding for item in response.data]
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
@st.cache_resource
def get_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = [PyPDFLoader('test12.pdf')]
embeddings = TogetherEmbeddings(
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
)
return VectorstoreIndexCreator(
embedding=embeddings,
text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
).from_loaders(loader)
index = get_pdf_index()
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=index.vectorstore.as_retriever(),
input_key='question'
)
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
prompt = st.chat_input("چطور میتونم کمک کنم؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|