File size: 5,742 Bytes
d287817
dc196f7
 
 
5b3a336
dc196f7
324f762
5b3a336
 
 
 
217583a
dc196f7
a3d3b71
dc196f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d3b71
dc196f7
 
 
 
22ba7d6
 
 
 
 
 
 
 
 
 
 
 
e3f5de5
dc196f7
 
2cee9ee
324f762
22ba7d6
324f762
 
22ba7d6
 
 
 
8f34ab2
dc196f7
99ed84f
5606c57
 
 
dc196f7
49a9882
 
b2c45d8
dc196f7
 
 
 
 
5985f75
9fe2e05
 
 
 
 
 
c9690b4
 
 
9fe2e05
dc196f7
9fe2e05
 
 
 
 
 
 
 
128e483
b2c45d8
128e483
dc196f7
b2c45d8
b8fecc5
b2c45d8
9fe2e05
128e483
 
 
b8fecc5
128e483
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together

# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")

st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: url("./military_bg.jpeg") no-repeat center center fixed;
        background-size: cover;
        backdrop-filter: blur(2px);
    }
    .stChatMessage {
        background-color: rgba(255,255,255,0.8);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 15px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        animation: fadeIn 0.4s ease-in-out;
    }
    .stTextInput > div > input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 10px;
        padding: 8px 20px;
        transition: 0.3s;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 20px;
        margin-bottom: 40px;
        background-color: rgba(255, 255, 255, 0.75);
        padding: 20px;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .header-text h1 {
        font-size: 42px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 18px;
        color: #34495e;
        margin-top: 8px;
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    </style>
""", unsafe_allow_html=True)

col1, col2, col3 = st.columns([1, 0.2, 1])
with col2:
    st.image("army.png", width=240)

st.markdown("""
    <div class="header-text">
        <h1>چت‌ بات توانا</h1>
        <div class="subtitle">رزم یار ارتش</div>
    </div>
""", unsafe_allow_html=True)

# ----------------- لود PDF و ساخت ایندکس -----------------
class TogetherEmbeddings(Embeddings):
    def __init__(self, model_name: str, api_key: str):
        self.model_name = model_name
        self.client = Together(api_key=api_key)

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        response = self.client.embeddings.create(model=self.model_name, input=texts)
        return [item.embedding for item in response.data]

    def embed_query(self, text: str) -> List[float]:
        return self.embed_documents([text])[0]

@st.cache_resource
def get_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        loader = [PyPDFLoader('test12.pdf')]
        embeddings = TogetherEmbeddings(
            model_name="togethercomputer/m2-bert-80M-8k-retrieval",
            api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
        )
        return VectorstoreIndexCreator(
            embedding=embeddings,
            text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
        ).from_loaders(loader)

index = get_pdf_index()

llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)

chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type='stuff',
    retriever=index.vectorstore.as_retriever(),
    input_key='question'
)

if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

prompt = st.chat_input("چطور می‌تونم کمک کنم؟")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن...")

        response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
        answer = response.split("Helpful Answer:")[-1].strip()
        if not answer:
            answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."

        thinking.empty()
        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None