Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,107 @@
|
|
1 |
import streamlit as st
|
2 |
-
import time
|
3 |
-
import os
|
4 |
-
import pickle
|
5 |
-
import numpy as np
|
6 |
from langchain.document_loaders import PyPDFLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
-
from
|
|
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
-
from
|
11 |
-
|
12 |
-
# ------------------ بارگذاری چانکها و امبدینگها ------------------
|
13 |
|
14 |
-
#
|
|
|
|
|
15 |
@st.cache_resource
|
16 |
-
def
|
17 |
-
# بارگذاری پی دی اف و اسپلیت چانک
|
18 |
pdf_loader = PyPDFLoader('test1.pdf')
|
19 |
pages = pdf_loader.load_and_split(RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0))
|
20 |
chunk_texts = [page.page_content for page in pages]
|
21 |
|
22 |
-
|
23 |
-
embeddings = TogetherEmbeddings(
|
24 |
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
25 |
)
|
|
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
progress_bar = st.progress(0)
|
33 |
-
|
34 |
-
# حالا شروع به پردازش با آپدیت پروگرس بار
|
35 |
all_embeddings = []
|
36 |
-
batch_size =
|
37 |
|
38 |
for i in range(0, len(chunk_texts), batch_size):
|
39 |
batch = chunk_texts[i:i+batch_size]
|
40 |
-
|
41 |
-
all_embeddings.extend(
|
42 |
|
43 |
-
# آپدیت پروگرس بار
|
44 |
progress_bar.progress(min((i + batch_size) / len(chunk_texts), 1.0))
|
45 |
|
46 |
-
st.success("✅
|
47 |
-
|
48 |
-
# حالا این all_embeddings رو داری، میتونی بندازی تو index
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
'chunk_embeddings': chunk_embeddings,
|
56 |
-
'embeddings_model': embeddings_model,
|
57 |
-
}, f)
|
58 |
-
|
59 |
-
st.success(f"✅ {len(chunk_texts)} چانک پردازش و ذخیره شد.")
|
60 |
-
return chunk_texts, chunk_embeddings, embeddings_model
|
61 |
-
|
62 |
-
chunk_texts, chunk_embeddings, embeddings_model = load_chunks_and_embeddings()
|
63 |
-
|
64 |
-
# ------------------ ساخت مدل LLM ------------------
|
65 |
|
|
|
|
|
|
|
66 |
llm = ChatOpenAI(
|
67 |
base_url="https://api.together.xyz/v1",
|
68 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
69 |
-
model="meta-llama/Llama-3
|
70 |
)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
# ۲- محاسبه شباهت
|
79 |
-
similarities = cosine_similarity(
|
80 |
-
[question_embedding],
|
81 |
-
chunk_embeddings
|
82 |
-
)[0]
|
83 |
-
|
84 |
-
# ۳- انتخاب ۱۰ چانک نزدیک
|
85 |
-
top_indices = np.argsort(similarities)[-10:][::-1]
|
86 |
-
selected_chunks = [chunk_texts[i] for i in top_indices]
|
87 |
-
|
88 |
-
# ۴- ساخت پرامپت
|
89 |
-
context = "\n\n".join(selected_chunks)
|
90 |
-
prompt = f"""با توجه به متن زیر فقط به زبان فارسی پاسخ بده:
|
91 |
-
|
92 |
-
متن:
|
93 |
-
{context}
|
94 |
-
|
95 |
-
سوال:
|
96 |
-
{question}
|
97 |
-
|
98 |
-
پاسخ:"""
|
99 |
-
|
100 |
-
response = llm.invoke(prompt)
|
101 |
-
return response.content
|
102 |
-
|
103 |
-
# ------------------ Chat Streamlit UI ------------------
|
104 |
-
|
105 |
-
st.title('���� چت با PDF (با ۱۰ چانک نزدیک و کش شده)')
|
106 |
|
|
|
|
|
|
|
107 |
if 'messages' not in st.session_state:
|
108 |
st.session_state.messages = []
|
109 |
|
110 |
if 'pending_prompt' not in st.session_state:
|
111 |
st.session_state.pending_prompt = None
|
112 |
|
113 |
-
# نمایش
|
114 |
for msg in st.session_state.messages:
|
115 |
with st.chat_message(msg['role']):
|
116 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
117 |
|
118 |
-
#
|
119 |
-
prompt = st.chat_input("
|
120 |
|
121 |
if prompt:
|
122 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
123 |
st.session_state.pending_prompt = prompt
|
124 |
st.rerun()
|
125 |
|
126 |
-
# وقتی سوال جدید داری
|
127 |
if st.session_state.pending_prompt:
|
128 |
with st.chat_message('ai'):
|
129 |
thinking = st.empty()
|
130 |
-
thinking.markdown("🤖 در حال
|
131 |
|
132 |
-
#
|
133 |
-
response =
|
134 |
-
answer = response.strip()
|
135 |
if not answer:
|
136 |
-
answer = "
|
137 |
|
138 |
thinking.empty()
|
139 |
full_response = ""
|
140 |
placeholder = st.empty()
|
141 |
|
142 |
-
#
|
143 |
for word in answer.split():
|
144 |
full_response += word + " "
|
145 |
placeholder.markdown(full_response + "▌")
|
@@ -148,5 +110,3 @@ if st.session_state.pending_prompt:
|
|
148 |
placeholder.markdown(full_response)
|
149 |
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
150 |
st.session_state.pending_prompt = None
|
151 |
-
|
152 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
from langchain.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import TogetherEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
import time
|
|
|
9 |
|
10 |
+
# --------------------------------------------
|
11 |
+
# 1. بارگذاری پی دی اف و ساخت امبدینگ چانکها (فقط یکبار و کش شده)
|
12 |
+
# --------------------------------------------
|
13 |
@st.cache_resource
|
14 |
+
def get_chunks_and_embeddings():
|
|
|
15 |
pdf_loader = PyPDFLoader('test1.pdf')
|
16 |
pages = pdf_loader.load_and_split(RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0))
|
17 |
chunk_texts = [page.page_content for page in pages]
|
18 |
|
19 |
+
embeddings_model = TogetherEmbeddings(
|
|
|
20 |
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
21 |
)
|
22 |
+
return chunk_texts, embeddings_model
|
23 |
|
24 |
+
# کش شده
|
25 |
+
chunk_texts, embeddings_model = get_chunks_and_embeddings()
|
26 |
|
27 |
+
# --------------------------------------------
|
28 |
+
# 2. ساختن امبدینگ چانکها با پروگرس بار
|
29 |
+
# --------------------------------------------
|
30 |
+
st.title("📄 Chat with your PDF (با پیدیاف خودت حرف بزن!)")
|
31 |
+
st.subheader("در حال آمادهسازی امبدینگ چانکها...")
|
32 |
|
33 |
progress_bar = st.progress(0)
|
|
|
|
|
34 |
all_embeddings = []
|
35 |
+
batch_size = 128
|
36 |
|
37 |
for i in range(0, len(chunk_texts), batch_size):
|
38 |
batch = chunk_texts[i:i+batch_size]
|
39 |
+
embedded = embeddings_model.embed_documents(batch)
|
40 |
+
all_embeddings.extend(embedded)
|
41 |
|
|
|
42 |
progress_bar.progress(min((i + batch_size) / len(chunk_texts), 1.0))
|
43 |
|
44 |
+
st.success("✅ همه چانکها آماده شدند!")
|
|
|
|
|
|
|
45 |
|
46 |
+
# --------------------------------------------
|
47 |
+
# 3. ساختن ایندکس FAISS از امبدینگها
|
48 |
+
# --------------------------------------------
|
49 |
+
vectorstore = FAISS.from_embeddings(all_embeddings, chunk_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# --------------------------------------------
|
52 |
+
# 4. آماده سازی مدل LLM و چین
|
53 |
+
# --------------------------------------------
|
54 |
llm = ChatOpenAI(
|
55 |
base_url="https://api.together.xyz/v1",
|
56 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
57 |
+
model="meta-llama/Llama-3-70B-Instruct-Turbo-Free"
|
58 |
)
|
59 |
|
60 |
+
chain = RetrievalQA.from_chain_type(
|
61 |
+
llm=llm,
|
62 |
+
chain_type='stuff',
|
63 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 10}),
|
64 |
+
input_key='question'
|
65 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# --------------------------------------------
|
68 |
+
# 5. چت بات Streamlit
|
69 |
+
# --------------------------------------------
|
70 |
if 'messages' not in st.session_state:
|
71 |
st.session_state.messages = []
|
72 |
|
73 |
if 'pending_prompt' not in st.session_state:
|
74 |
st.session_state.pending_prompt = None
|
75 |
|
76 |
+
# نمایش پیامهای قبلی
|
77 |
for msg in st.session_state.messages:
|
78 |
with st.chat_message(msg['role']):
|
79 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
80 |
|
81 |
+
# دریافت ورودی از کاربر
|
82 |
+
prompt = st.chat_input("چطور میتونم کمکت کنم؟")
|
83 |
|
84 |
if prompt:
|
85 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
86 |
st.session_state.pending_prompt = prompt
|
87 |
st.rerun()
|
88 |
|
|
|
89 |
if st.session_state.pending_prompt:
|
90 |
with st.chat_message('ai'):
|
91 |
thinking = st.empty()
|
92 |
+
thinking.markdown("🤖 در حال فکر کردن...")
|
93 |
|
94 |
+
# اجرای جستجو در ایندکس برای پاسخ
|
95 |
+
response = chain.run(f"فقط به زبان فارسی پاسخ بده. سوال: {st.session_state.pending_prompt}")
|
96 |
+
answer = response.split("Helpful Answer:")[-1].strip()
|
97 |
if not answer:
|
98 |
+
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
99 |
|
100 |
thinking.empty()
|
101 |
full_response = ""
|
102 |
placeholder = st.empty()
|
103 |
|
104 |
+
# نمایش پاسخ به صورت تایپی
|
105 |
for word in answer.split():
|
106 |
full_response += word + " "
|
107 |
placeholder.markdown(full_response + "▌")
|
|
|
110 |
placeholder.markdown(full_response)
|
111 |
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
112 |
st.session_state.pending_prompt = None
|
|
|
|