File size: 7,508 Bytes
7a0f03d
9fe2e05
 
defb0a9
dc99e66
 
 
 
b51fe95
9ebd8d9
5985f75
 
 
128e483
 
5d58046
 
e3f5de5
ab566ee
6564690
1e42623
7a0f03d
2c08c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1a170
2c08c25
 
 
 
 
 
 
 
 
dc99e66
 
41af8de
e3f5de5
 
 
4dfc654
 
 
b5731b2
 
 
20419dd
b5731b2
1e42623
 
4dfc654
b5731b2
1e42623
 
 
 
0f1a411
1e42623
4dfc654
1e42623
 
 
 
dc99e66
1e42623
 
 
b5731b2
 
 
 
68eec95
ab566ee
db33911
 
 
 
5985f75
5054e30
1e42623
5985f75
b7b439e
4dfc654
5fc8461
ab566ee
5054e30
4dfc654
d5531f7
128e483
6997dfd
1e42623
ab566ee
5fc8461
ab566ee
5985f75
1e42623
5985f75
1e42623
ab566ee
680827f
4dfc654
5985f75
680827f
 
 
 
 
 
5985f75
dc99e66
9fe2e05
 
 
 
 
 
7a0f03d
c9690b4
 
 
9fe2e05
7a0f03d
dc99e66
9fe2e05
 
 
 
 
 
5985f75
9fe2e05
 
128e483
95cb532
128e483
7a0f03d
dc99e66
 
9587c62
 
9fe2e05
128e483
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from sentence_transformers import SentenceTransformer
import numpy as np
from langchain.indexes.vectorstore import VectorstoreIndexCreator

from sentence_transformers import SentenceTransformer
import faiss


# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide")

st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: url("./military_bg.jpeg") no-repeat center center fixed;
        background-size: cover;
        backdrop-filter: blur(2px);
    }
    .stChatMessage {
        background-color: rgba(255,255,255,0.8);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 15px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        animation: fadeIn 0.4s ease-in-out;
    }
    .stTextInput > div > input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 10px;
        padding: 8px 20px;
        transition: 0.3s;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 20px;
        margin-bottom: 40px;
        background-color: rgba(255, 255, 255, 0.75);
        padding: 20px;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .header-text h1 {
        font-size: 42px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 18px;
        color: #34495e;
        margin-top: 8px;
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    </style>
""", unsafe_allow_html=True)

col1, col2, col3 = st.columns([1, 2, 1])
with col2:
    st.image("army.png", width=240)

st.markdown("""
    <div class="header-text">
        <h1>چت‌ بات توانا</h1>
        <div class="subtitle">دستیار هوشمند برای تصمیم‌گیری در میدان نبرد</div>
    </div>
""", unsafe_allow_html=True)

# ----------------- لود PDF و ساخت ایندکس -----------------

@st.cache_resource
def get_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        # بارگذاری PDF
        loader = PyPDFLoader('test1.pdf')
        documents = loader.load_and_split()  # اینجا متن PDF را استخراج می‌کنیم
        model = TogetherEmbeddings(
            model_name="togethercomputer/m2-bert-80M-8k-retrieval",
            api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"

        )
        splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
        texts = []
        for doc in documents:
            texts.extend(splitter.split_text(doc.page_content))  
        progress_bar = st.progress(0)
        total_docs = len(texts)

        embeddings = []
        batch_size = 512
        for i in range(0, total_docs, batch_size):
            batch_texts = texts[i:i + batch_size]
            batch_embeddings = model.encode(batch_texts, convert_to_numpy=True)
            embeddings.extend(batch_embeddings)

            progress_bar.progress(min((i + batch_size) / total_docs, 1.0))

        time.sleep(1)
        progress_bar.empty()

       return VectorstoreIndexCreator(
            embedding=embeddings,
            text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
        ).from_loaders(loader)

# ----------------- تعریف LLM از Groq -----------------
llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)


# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
    documents: List[dict] = Field(...)  # تغییر نوع مستند به dict
    embeddings: List[np.ndarray] = Field(...)
    index: faiss.Index

    def _get_relevant_documents(self, query: str) -> List[dict]:
        sentence_model = SentenceTransformer("togethercomputer/m2-bert-80M-8k-retrieval", trust_remote_code=True)
        query_embedding = sentence_model.encode(query, convert_to_numpy=True)

        # جستجوی اسناد مشابه
        _, indices = self.index.search(np.expand_dims(query_embedding, axis=0), 5)  # پیدا کردن 5 سند مشابه

        return [self.documents[i] for i in indices[0]]


# ----------------- ساخت Index -----------------
documents, embeddings, index = get_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings, index=index)


# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    input_key="question"
)

# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

# ----------------- نمایش پیام‌های قبلی -----------------
for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن  ...")

        try:
            response = chain.run(f"سوال: {st.session_state.pending_prompt}")
            answer = response.strip()
        except Exception as e:
            answer = f"خطا در پاسخ‌دهی: {str(e)}"

        thinking.empty()

        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None