File size: 8,383 Bytes
d287817
dc196f7
 
 
5b3a336
dc196f7
324f762
5b3a336
 
 
 
07e178a
9144ba9
2242369
9144ba9
d9bc83c
 
 
 
 
 
5b0f7c7
a3d3b71
dc196f7
5b0f7c7
dc196f7
 
 
 
 
 
 
 
 
5b0f7c7
dc196f7
5b0f7c7
 
 
9144ba9
dc196f7
5b0f7c7
9144ba9
5b0f7c7
 
9144ba9
dc196f7
 
5b0f7c7
dc196f7
 
9144ba9
 
5b0f7c7
9144ba9
dc196f7
 
5b0f7c7
dc196f7
 
 
9144ba9
 
 
 
 
 
dc196f7
 
9144ba9
dc196f7
5b0f7c7
6a58328
dc196f7
 
9144ba9
dc196f7
9144ba9
5b0f7c7
 
9144ba9
5b0f7c7
 
9144ba9
 
 
 
5b0f7c7
 
 
 
 
 
 
dc196f7
9144ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc196f7
 
 
 
5b0f7c7
 
e72fe69
 
9144ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7437313
 
 
 
 
 
 
 
 
 
 
 
5b0f7c7
 
dc196f7
 
a9cf61c
5b0f7c7
dc196f7
 
 
5b0f7c7
 
9144ba9
936909b
5b0f7c7
936909b
 
6a58328
283f324
 
 
d9bc83c
 
 
2242369
283f324
 
d9bc83c
 
 
 
 
 
2242369
d9bc83c
 
 
 
 
 
 
 
 
 
 
 
 
 
2242369
 
d9bc83c
 
 
283f324
1e34f68
0252875
283f324
9e2e699
5985f75
d9bc83c
9fe2e05
 
 
 
 
 
c9690b4
 
d9bc83c
9fe2e05
d9bc83c
9fe2e05
d9bc83c
 
 
9fe2e05
 
 
d9bc83c
128e483
d9bc83c
 
 
 
2242369
 
 
 
 
9e2e699
 
2242369
 
 
 
 
 
 
 
9fe2e05
128e483
 
 
d9bc83c
128e483
 
d9bc83c
128e483
 
 
d9bc83c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
import pandas as pd
import streamlit as st
from sklearn.metrics.pairwise import cosine_similarity


import numpy as np
from sentence_transformers import SentenceTransformer
import faiss


# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")

# ----------------- استایل سفارشی -----------------
st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: linear-gradient(to left, #f0f4f7, #d9e2ec);
    }
    .sidebar .sidebar-content {
        background-color: #ffffff;
        border-left: 2px solid #4e8a3e;
        padding-top: 10px;
    }
    .sidebar .sidebar-content div {
        margin-bottom: 10px;
        font-weight: bold;
        color: #2c3e50;
        font-size: 15px;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 8px;
        padding: 5px 16px;
        transition: 0.3s;
        font-size: 14px;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 15px;
        margin-bottom: 25px;
        background-color: rgba(255, 255, 255, 0.85);
        padding: 16px;
        border-radius: 16px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.1);
    }
    .header-text h1 {
        font-size: 36px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 16px;
        color: #34495e;
        margin-top: 5px;
    }
    .chat-message {
        background-color: rgba(255, 255, 255, 0.95);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 14px;
        margin-bottom: 10px;
        box-shadow: 0 4px 8px rgba(0,0,0,0.08);
        animation: fadeIn 0.5s ease;
    }
    .stTextInput>div>input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    img.small-logo {
        width: 90px;
        margin-bottom: 15px;
        display: block;
        margin-right: auto;
        margin-left: auto;
    }
    .menu-item {
        display: flex;
        align-items: center;
        gap: 8px;
        padding: 6px 0;
        font-size: 15px;
        cursor: pointer;
    }
    .menu-item img {
        width: 20px;
        height: 20px;
    }
    </style>
""", unsafe_allow_html=True)

# ----------------- بدنه اصلی -----------------
with st.sidebar:
    st.image("log.png", width=90)

    
    st.markdown("""
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/3596/3596165.png" />
        گفتگوی جدید
    </div>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/709/709496.png" />
        تاریخچه
    </div>
    <hr/>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/1828/1828932.png" />
        مدل‌های هوش مصنوعی
    </div>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/681/681494.png" />
        تولید محتوا
    </div>
    <hr/>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/3601/3601646.png" />
        دستیار ویژه
    </div>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/709/709612.png" />
        ابزار مالی
    </div>
    <hr/>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/2099/2099058.png" />
        تنظیمات
    </div>
    <div class="menu-item">
        <img src="https://cdn-icons-png.flaticon.com/512/597/597177.png" />
        پشتیبانی
    </div>
    """, unsafe_allow_html=True)
st.markdown("""
    <style>
    /* تنظیم سایز سایدبار */
    [data-testid="stSidebar"] {
        width: 220px !important;
        flex-shrink: 0;
    }
    [data-testid="stSidebar"] > div {
        width: 220px !important;
    }
    </style>
""", unsafe_allow_html=True)

# محتوای اصلی
st.markdown("""
    <div class="header-text">
        <h1>رزم یار ارتش</h1>
        <div class="subtitle">دستیار هوشمند ارتشی برای پشتیبانی و راهبری</div>
    </div>
""", unsafe_allow_html=True)

st.markdown('<div class="chat-message">👋 سلام! چطور میتونم کمکتون کنم؟</div>', unsafe_allow_html=True)

# چت اینپوت کاربر
#user_input = st.text_input("پیام خود را وارد کنید...")

#if user_input:
#   st.markdown(f'<div class="chat-message">📩 شما: {user_input}</div>', unsafe_allow_html=True)




# ⚙️ مدل Embedding ساده و سریع
@st.cache_resource
def get_embedding_model():
    return SentenceTransformer("HooshvareLab/bert-fa-zwnj-base")

@st.cache_resource
def process_csv(csv_file):
    df = pd.read_csv(csv_file)
    texts = df.iloc[:, 0].astype(str).tolist()
    texts = [text for text in texts if text.strip()]

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=200,
        chunk_overlap=50,
        length_function=len,
        separators=["\n\n", "\n", " ", ""]
    )

    split_texts = []
    for text in texts:
        split_texts.extend(text_splitter.split_text(text))

    # مدل امبدینگ
    model = get_embedding_model()
    embeddings = model.encode(split_texts, show_progress_bar=True)

    dim = embeddings.shape[1]
    index = faiss.IndexHNSWFlat(dim, 32)  
    index.hnsw.efSearch = 50 
    index.add(np.array(embeddings))

    return split_texts, embeddings, index

# مسیر فایل CSV
csv_file_path = 'output (1).csv'

texts, vectors, index = process_csv(csv_file_path)

# رابط چت
if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(msg['content'], unsafe_allow_html=True)

query = st.chat_input("سؤالت را بپرس...")

if query:
    st.session_state.messages.append({'role': 'user', 'content': query})
    st.session_state.pending_prompt = query
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message("ai"):
        thinking = st.empty()
        thinking.markdown("🤖 در حال جستجو...")

        model = get_embedding_model()
        query_vector = model.encode([st.session_state.pending_prompt])
        
        D, I = index.search(np.array(query_vector), k=10)
        
        top_indices = I[0]
        top_texts = [texts[i] for i in top_indices]
        top_vectors = np.array([vectors[i] for i in top_indices])

        
        similarities = cosine_similarity(query_vector, top_vectors)[0]
        
        # پیدا کردن دقیق‌ترین متن
        best_match_relative_index = np.argmax(similarities)
        best_match_index = top_indices[best_match_relative_index]
        best_match_text = texts[best_match_index]
        response = "🧠 پاسخ سوال :\n\n" .join(best_match_text)

        thinking.empty()
        full_response = ""
        placeholder = st.empty()
        for word in response.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.02)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None