File size: 20,250 Bytes
cd25265
a71f5d3
 
177badc
b7b1936
ef9ea85
177badc
b7b1936
3ec1fb0
1d8d0a5
 
 
2eb05f5
1d8d0a5
 
177badc
 
 
b7b1936
a854895
b7b1936
 
 
177badc
a854895
 
b7b1936
 
 
 
 
 
cb3d765
b7b1936
 
abdaa5a
 
 
 
b7b1936
 
 
 
 
 
 
 
 
 
04519b1
b7b1936
0fa9e72
b7b1936
0fa9e72
b7b1936
 
 
 
 
 
 
e43c6c7
177badc
 
 
 
 
 
 
82259b8
a88c73f
 
 
 
 
 
 
 
a71f5d3
b7b1936
 
 
 
88d7d46
a3e1675
88d7d46
 
a854895
22b7bf5
177badc
 
22b7bf5
 
a88c73f
 
 
 
 
b7b1936
177badc
b7b1936
74ccd9d
 
a88c73f
6b96774
 
 
 
 
854eb45
177badc
a88c73f
 
177badc
a88c73f
177badc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88c73f
 
 
177badc
a88c73f
177badc
82392d3
 
 
177badc
 
 
a88c73f
 
 
177badc
 
 
 
a88c73f
177badc
 
b7b1936
74ccd9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177badc
 
 
74ccd9d
 
 
 
 
 
 
 
 
 
 
 
 
177badc
74ccd9d
 
 
 
 
 
 
 
 
 
 
 
177badc
74ccd9d
 
 
 
 
 
 
 
 
177badc
74ccd9d
ca9db04
177badc
a71f5d3
9738dce
f82fd7b
854eb45
6725272
9738dce
 
6b96774
9738dce
 
a71f5d3
 
 
 
 
 
 
d4bbfb5
 
 
 
 
735e830
 
86e6a95
9f58901
b7b1936
2eb05f5
9f58901
 
 
 
b7b1936
9f58901
ef9ea85
b872418
 
 
 
ef9ea85
 
b872418
 
 
 
b7b1936
 
a20297c
 
 
 
7d4603f
a20297c
 
b872418
ef9ea85
b7b1936
e6ca5c2
 
 
 
a20297c
 
 
ef9ea85
7d4603f
a20297c
 
 
 
9738dce
b7b1936
b872418
ef9ea85
b7b1936
ef9ea85
 
3b0e749
ef9ea85
9738dce
b7b1936
2d9fb2b
d4bbfb5
a71f5d3
 
 
 
 
 
ef9ea85
a71f5d3
ef9ea85
 
a71f5d3
 
 
 
 
ef9ea85
a71f5d3
 
854eb45
abdaa5a
 
 
 
 
 
 
9e23671
47b5782
 
 
 
 
 
 
570499e
abdaa5a
 
 
 
 
 
 
47b5782
abdaa5a
 
 
 
 
 
 
 
22b7bf5
177badc
4d649f7
abdaa5a
 
 
 
9e23671
abdaa5a
 
22b7bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d649f7
22b7bf5
 
 
 
 
 
 
 
 
9738dce
 
 
ef9ea85
90b30ce
2d9fb2b
a71f5d3
 
 
 
 
 
 
 
 
2eb05f5
ef9ea85
 
b7b1936
22b7bf5
47b5782
22b7bf5
 
 
a88c73f
 
 
 
 
a71f5d3
6b9434e
a71f5d3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline
from peft import PeftModel, LoraConfig
import os
from PIL import Image

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Инициализация ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype)

def get_lora_sd_pipeline(
    lora_dir='./lora_man_animestyle',
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default"
):
    unet_sub_dir = os.path.join(lora_dir, "unet")
    text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder")
    
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path
    
    if base_model_name_or_path is None:
        raise ValueError("Укажите название базовой модели или путь к ней")
    
    pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
    before_params = pipe.unet.parameters()
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    pipe.unet.set_adapter(adapter_name)
    after_params = pipe.unet.parameters()
    
    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
    
    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()
    
    return pipe

def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
    tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
    part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
    with torch.no_grad():
        embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s]
    return torch.cat(embeds, dim=1)

def align_embeddings(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
    return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
           torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))

def preprocess_image(image, target_width, target_height): # Преобразует изображение в формат, подходящий для модели.
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    image = image.resize((target_width, target_height), Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0  # Нормализация [0, 1]
    image = image[None].transpose(0, 3, 1, 2)  # Преобразуем в (batch, channels, height, width)
    image = torch.from_numpy(image).to(device)
    return image

pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
#pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(    
    model_default,
    controlnet=controlnet,
    torch_dtype=torch_dtype
).to(device)

def infer(
    prompt, 
    negative_prompt, 
    width=512, 
    height=512, 
    num_inference_steps=20, 
    model='stable-diffusion-v1-5/stable-diffusion-v1-5', 
    seed=4, 
    guidance_scale=7.5, 
    lora_scale=0.5,
    strength_cn=0.5,        # Коэфф. зашумления ControlNet
    use_control_net=False,  # Параметр для включения ControlNet
    control_strength=0.5,   # Сила влияния ControlNet
    cn_source_image=None,   # Исходное изображение ControlNet
    control_image=None,     # Контрольное изображение ControlNet
    strength_ip=0.5,        # Коэфф. зашумления IP_adapter
    use_ip_adapter=False,   # Параметр для включения IP_adapter
    ip_adapter_strength=0.5,# Сила влияния IP_adapter
    ip_source_image=None,   # Исходное изображение IP_adapter
    ip_adapter_image=None,  # Контрольное изображение IP_adapter
    progress=gr.Progress(track_tqdm=True)
):
    generator = torch.Generator(device).manual_seed(seed)

    # Генерация с IP_adapter
    if use_ip_adapter and ip_source_image is not None and ip_adapter_image is not None:
        # pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(    
        #     model_default,
        #     controlnet=controlnet,
        #     torch_dtype=torch_dtype
        # ).to(device)
        
        # Преобразуем изображения
        ip_source_image = preprocess_image(ip_source_image, width, height)
        ip_adapter_image = preprocess_image(ip_adapter_image, width, height)
        
        # Создаём пайплайн IP_adapter с LoRA, если он ещё не создан   ???????????????????????????????????????????????????????????????
        if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded:
            # Загружаем LoRA для UNet
            pipe_controlnet.unet = PeftModel.from_pretrained(
                pipe_controlnet.unet, 
                './lora_man_animestyle/unet', 
                adapter_name="default"
            )
            pipe_controlnet.unet.set_adapter("default")
            
            # Загружаем LoRA для Text Encoder, если она существует
            text_encoder_lora_path = './lora_man_animestyle/text_encoder'
            if os.path.exists(text_encoder_lora_path):
                pipe_controlnet.text_encoder = PeftModel.from_pretrained(
                    pipe_controlnet.text_encoder, 
                    text_encoder_lora_path, 
                    adapter_name="default"
                )
                pipe_controlnet.text_encoder.set_adapter("default")
            
            # Объединяем LoRA с основной моделью
            pipe_controlnet.fuse_lora(lora_scale=lora_scale)
            pipe_controlnet.lora_loaded = True  # Помечаем, что LoRA загружена
        
        # Убедимся, что ip_adapter_strength имеет тип float
        ip_adapter_strength = float(ip_adapter_strength)
        #strength_ip = float(strength_ip)
        
        # Используем IP_adapter с LoRA  ????????????????????????????????????????????????????????????????????????
        pipe = pipe_controlnet
        prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
        image = pipe_controlnet(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            image=ip_source_image,     
            control_image=ip_adapter_image,  
            strength=strength_ip, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
            width=width,
            height=height,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            controlnet_conditioning_scale=ip_adapter_strength, # ???????????????????????????????????????????????????????????????
            generator=generator
        ).images[0]
    else:
        # Генерация с ControlNet
        if use_control_net and control_image is not None and cn_source_image is not None:
            # pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(    
            #     model_default,
            #     controlnet=controlnet,
            #     torch_dtype=torch_dtype
            # ).to(device)
        
            # Преобразуем изображения
            cn_source_image = preprocess_image(cn_source_image, width, height)
            control_image = preprocess_image(control_image, width, height)
        
            # Создаём пайплайн ControlNet с LoRA, если он ещё не создан
            if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded:
                # Загружаем LoRA для UNet
                pipe_controlnet.unet = PeftModel.from_pretrained(
                    pipe_controlnet.unet, 
                    './lora_man_animestyle/unet', 
                    adapter_name="default"
                )
                pipe_controlnet.unet.set_adapter("default")
            
                # Загружаем LoRA для Text Encoder, если она существует
                text_encoder_lora_path = './lora_man_animestyle/text_encoder'
                if os.path.exists(text_encoder_lora_path):
                    pipe_controlnet.text_encoder = PeftModel.from_pretrained(
                        pipe_controlnet.text_encoder, 
                        text_encoder_lora_path, 
                        adapter_name="default"
                    )
                    pipe_controlnet.text_encoder.set_adapter("default")
            
                # Объединяем LoRA с основной моделью
                pipe_controlnet.fuse_lora(lora_scale=lora_scale)
                pipe_controlnet.lora_loaded = True  # Помечаем, что LoRA загружена
        
            # Убедимся, что control_strength имеет тип float
            control_strength = float(control_strength)
            #strength_sn = float(strength_sn)
        
            # Используем ControlNet с LoRA
            pipe = pipe_controlnet
            prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
            negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
            prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
            image = pipe_controlnet(
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                image=cn_source_image,     
                control_image=control_image,  
                strength=strength_cn, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
                width=width,
                height=height,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                controlnet_conditioning_scale=control_strength,
                generator=generator
            ).images[0]
        else:
            # Генерация без ControlNet и IP_adapter
            if model != model_default:
                pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
                prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
                negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
                prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
            else:
                pipe = pipe_default
                prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
                negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
                prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
                pipe.fuse_lora(lora_scale=lora_scale)
        
            params = {
                'prompt_embeds': prompt_embeds,
                'negative_prompt_embeds': negative_prompt_embeds,
                'guidance_scale': guidance_scale,
                'num_inference_steps': num_inference_steps,
                'width': width,
                'height': height,
                'generator': generator,
            }
        
            image = pipe(**params).images[0]
    
    return image

examples = [
    "A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.",
    "A man runs through the park against the background of trees. The man's entire figure, face, arms and legs are visible. Anime style. The best quality.",
]    

examples_negative = [
    "Blurred details, low resolution, no face visible, poor image of a man's face, poor quality, artifacts, black and white image.",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

available_models = [
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "CompVis/stable-diffusion-v1-4",
]

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")

        with gr.Row():
            model = gr.Dropdown(
                label="Model Selection",
                choices=available_models,
                value="stable-diffusion-v1-5/stable-diffusion-v1-5",
                interactive=True
            )
        
        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
        )

        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                value=0.5,
            ) 

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=7.5,
            )  
        
        with gr.Row():
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=4,
            )

        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=30,
            )
               
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

        # ControlNet ---------------------------------------------------------------------------------
        with gr.Blocks():
            with gr.Row():
                use_control_net = gr.Checkbox(
                    label="Use ControlNet",
                    value=False,
                )

            with gr.Column(visible=False) as control_net_options:    
                strength_cn = gr.Slider(
                    label="Strength",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.5,
                    step=0.05,
                )
                
                control_strength = gr.Slider(
                    label="Control Strength",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.5,
                    step=0.05,
                )

                control_mode = gr.Dropdown(
                    label="Control Mode",
                    choices=[
                        "pose_estimation",
                    ],
                    value="pose_estimation",
                )
        
                cn_source_image = gr.Image(label="Upload Source Image")
                
                control_image = gr.Image(label="Upload Control Net Image")

            use_control_net.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=use_control_net,
                outputs=control_net_options
            )

        # IP_adapter ---------------------------------------------------------------------------------
        with gr.Blocks():
            with gr.Row():
                use_ip_adapter = gr.Checkbox(
                    label="Use IP_adapter",
                    value=False,
                )

            with gr.Column(visible=False) as ip_adapter_options:    
                strength_ip = gr.Slider(
                    label="Strength",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.5,
                    step=0.05,
                )
                
                ip_adapter_strength = gr.Slider(
                    label="IP_adapter Strength",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.5,
                    step=0.05,
                )

                ip_source_image = gr.Image(label="Upload Source Image")
                
                ip_adapter_image = gr.Image(label="Upload IP_adapter Image")

            use_ip_adapter.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=use_ip_adapter,
                outputs=ip_adapter_options
            )
        # --------------------------------------------------------------------------------------
         
        
        gr.Examples(examples=examples, inputs=[prompt])
        gr.Examples(examples=examples_negative, inputs=[negative_prompt])
        
        run_button = gr.Button("Run", scale=1, variant="primary")
        result = gr.Image(label="Result", show_label=False)   
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            num_inference_steps,
            model,
            seed,
            guidance_scale,
            lora_scale,
            strength_cn,       # Коэфф. зашумления ControlNet
            use_control_net,   # Чекбокс для ControlNet
            control_strength,  # Контроль силы ControlNet
            cn_source_image,   # Исходное изображение ControlNet
            control_image,     # Контрольное изображение ControlNet
            strength_ip,        # Коэфф. зашумления IP_adapter
            use_ip_adapter,     # Параметр для включения IP_adapter
            ip_adapter_strength,# Сила влияния IP_adapter
            ip_source_image,    # Исходное изображение IP_adapter
            ip_adapter_image,   # Контрольное изображение IP_adapter
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()