Spaces:
Running
Running
File size: 20,250 Bytes
cd25265 a71f5d3 177badc b7b1936 ef9ea85 177badc b7b1936 3ec1fb0 1d8d0a5 2eb05f5 1d8d0a5 177badc b7b1936 a854895 b7b1936 177badc a854895 b7b1936 cb3d765 b7b1936 abdaa5a b7b1936 04519b1 b7b1936 0fa9e72 b7b1936 0fa9e72 b7b1936 e43c6c7 177badc 82259b8 a88c73f a71f5d3 b7b1936 88d7d46 a3e1675 88d7d46 a854895 22b7bf5 177badc 22b7bf5 a88c73f b7b1936 177badc b7b1936 74ccd9d a88c73f 6b96774 854eb45 177badc a88c73f 177badc a88c73f 177badc a88c73f 177badc a88c73f 177badc 82392d3 177badc a88c73f 177badc a88c73f 177badc b7b1936 74ccd9d 177badc 74ccd9d 177badc 74ccd9d 177badc 74ccd9d 177badc 74ccd9d ca9db04 177badc a71f5d3 9738dce f82fd7b 854eb45 6725272 9738dce 6b96774 9738dce a71f5d3 d4bbfb5 735e830 86e6a95 9f58901 b7b1936 2eb05f5 9f58901 b7b1936 9f58901 ef9ea85 b872418 ef9ea85 b872418 b7b1936 a20297c 7d4603f a20297c b872418 ef9ea85 b7b1936 e6ca5c2 a20297c ef9ea85 7d4603f a20297c 9738dce b7b1936 b872418 ef9ea85 b7b1936 ef9ea85 3b0e749 ef9ea85 9738dce b7b1936 2d9fb2b d4bbfb5 a71f5d3 ef9ea85 a71f5d3 ef9ea85 a71f5d3 ef9ea85 a71f5d3 854eb45 abdaa5a 9e23671 47b5782 570499e abdaa5a 47b5782 abdaa5a 22b7bf5 177badc 4d649f7 abdaa5a 9e23671 abdaa5a 22b7bf5 4d649f7 22b7bf5 9738dce ef9ea85 90b30ce 2d9fb2b a71f5d3 2eb05f5 ef9ea85 b7b1936 22b7bf5 47b5782 22b7bf5 a88c73f a71f5d3 6b9434e a71f5d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline
from peft import PeftModel, LoraConfig
import os
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Инициализация ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype)
def get_lora_sd_pipeline(
lora_dir='./lora_man_animestyle',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default"
):
unet_sub_dir = os.path.join(lora_dir, "unet")
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Укажите название базовой модели или путь к ней")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
before_params = pipe.unet.parameters()
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.unet.set_adapter(adapter_name)
after_params = pipe.unet.parameters()
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
with torch.no_grad():
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s]
return torch.cat(embeds, dim=1)
def align_embeddings(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
def preprocess_image(image, target_width, target_height): # Преобразует изображение в формат, подходящий для модели.
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = image.resize((target_width, target_height), Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0 # Нормализация [0, 1]
image = image[None].transpose(0, 3, 1, 2) # Преобразуем в (batch, channels, height, width)
image = torch.from_numpy(image).to(device)
return image
pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
#pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_default,
controlnet=controlnet,
torch_dtype=torch_dtype
).to(device)
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model='stable-diffusion-v1-5/stable-diffusion-v1-5',
seed=4,
guidance_scale=7.5,
lora_scale=0.5,
strength_cn=0.5, # Коэфф. зашумления ControlNet
use_control_net=False, # Параметр для включения ControlNet
control_strength=0.5, # Сила влияния ControlNet
cn_source_image=None, # Исходное изображение ControlNet
control_image=None, # Контрольное изображение ControlNet
strength_ip=0.5, # Коэфф. зашумления IP_adapter
use_ip_adapter=False, # Параметр для включения IP_adapter
ip_adapter_strength=0.5,# Сила влияния IP_adapter
ip_source_image=None, # Исходное изображение IP_adapter
ip_adapter_image=None, # Контрольное изображение IP_adapter
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
# Генерация с IP_adapter
if use_ip_adapter and ip_source_image is not None and ip_adapter_image is not None:
# pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
# model_default,
# controlnet=controlnet,
# torch_dtype=torch_dtype
# ).to(device)
# Преобразуем изображения
ip_source_image = preprocess_image(ip_source_image, width, height)
ip_adapter_image = preprocess_image(ip_adapter_image, width, height)
# Создаём пайплайн IP_adapter с LoRA, если он ещё не создан ???????????????????????????????????????????????????????????????
if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded:
# Загружаем LoRA для UNet
pipe_controlnet.unet = PeftModel.from_pretrained(
pipe_controlnet.unet,
'./lora_man_animestyle/unet',
adapter_name="default"
)
pipe_controlnet.unet.set_adapter("default")
# Загружаем LoRA для Text Encoder, если она существует
text_encoder_lora_path = './lora_man_animestyle/text_encoder'
if os.path.exists(text_encoder_lora_path):
pipe_controlnet.text_encoder = PeftModel.from_pretrained(
pipe_controlnet.text_encoder,
text_encoder_lora_path,
adapter_name="default"
)
pipe_controlnet.text_encoder.set_adapter("default")
# Объединяем LoRA с основной моделью
pipe_controlnet.fuse_lora(lora_scale=lora_scale)
pipe_controlnet.lora_loaded = True # Помечаем, что LoRA загружена
# Убедимся, что ip_adapter_strength имеет тип float
ip_adapter_strength = float(ip_adapter_strength)
#strength_ip = float(strength_ip)
# Используем IP_adapter с LoRA ????????????????????????????????????????????????????????????????????????
pipe = pipe_controlnet
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
image = pipe_controlnet(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=ip_source_image,
control_image=ip_adapter_image,
strength=strength_ip, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=ip_adapter_strength, # ???????????????????????????????????????????????????????????????
generator=generator
).images[0]
else:
# Генерация с ControlNet
if use_control_net and control_image is not None and cn_source_image is not None:
# pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
# model_default,
# controlnet=controlnet,
# torch_dtype=torch_dtype
# ).to(device)
# Преобразуем изображения
cn_source_image = preprocess_image(cn_source_image, width, height)
control_image = preprocess_image(control_image, width, height)
# Создаём пайплайн ControlNet с LoRA, если он ещё не создан
if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded:
# Загружаем LoRA для UNet
pipe_controlnet.unet = PeftModel.from_pretrained(
pipe_controlnet.unet,
'./lora_man_animestyle/unet',
adapter_name="default"
)
pipe_controlnet.unet.set_adapter("default")
# Загружаем LoRA для Text Encoder, если она существует
text_encoder_lora_path = './lora_man_animestyle/text_encoder'
if os.path.exists(text_encoder_lora_path):
pipe_controlnet.text_encoder = PeftModel.from_pretrained(
pipe_controlnet.text_encoder,
text_encoder_lora_path,
adapter_name="default"
)
pipe_controlnet.text_encoder.set_adapter("default")
# Объединяем LoRA с основной моделью
pipe_controlnet.fuse_lora(lora_scale=lora_scale)
pipe_controlnet.lora_loaded = True # Помечаем, что LoRA загружена
# Убедимся, что control_strength имеет тип float
control_strength = float(control_strength)
#strength_sn = float(strength_sn)
# Используем ControlNet с LoRA
pipe = pipe_controlnet
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
image = pipe_controlnet(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=cn_source_image,
control_image=control_image,
strength=strength_cn, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=control_strength,
generator=generator
).images[0]
else:
# Генерация без ControlNet и IP_adapter
if model != model_default:
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
else:
pipe = pipe_default
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
pipe.fuse_lora(lora_scale=lora_scale)
params = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
image = pipe(**params).images[0]
return image
examples = [
"A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.",
"A man runs through the park against the background of trees. The man's entire figure, face, arms and legs are visible. Anime style. The best quality.",
]
examples_negative = [
"Blurred details, low resolution, no face visible, poor image of a man's face, poor quality, artifacts, black and white image.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
available_models = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
with gr.Row():
model = gr.Dropdown(
label="Model Selection",
choices=available_models,
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
interactive=True
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=4,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
# ControlNet ---------------------------------------------------------------------------------
with gr.Blocks():
with gr.Row():
use_control_net = gr.Checkbox(
label="Use ControlNet",
value=False,
)
with gr.Column(visible=False) as control_net_options:
strength_cn = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
)
control_strength = gr.Slider(
label="Control Strength",
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
)
control_mode = gr.Dropdown(
label="Control Mode",
choices=[
"pose_estimation",
],
value="pose_estimation",
)
cn_source_image = gr.Image(label="Upload Source Image")
control_image = gr.Image(label="Upload Control Net Image")
use_control_net.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=use_control_net,
outputs=control_net_options
)
# IP_adapter ---------------------------------------------------------------------------------
with gr.Blocks():
with gr.Row():
use_ip_adapter = gr.Checkbox(
label="Use IP_adapter",
value=False,
)
with gr.Column(visible=False) as ip_adapter_options:
strength_ip = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
)
ip_adapter_strength = gr.Slider(
label="IP_adapter Strength",
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
)
ip_source_image = gr.Image(label="Upload Source Image")
ip_adapter_image = gr.Image(label="Upload IP_adapter Image")
use_ip_adapter.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=use_ip_adapter,
outputs=ip_adapter_options
)
# --------------------------------------------------------------------------------------
gr.Examples(examples=examples, inputs=[prompt])
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model,
seed,
guidance_scale,
lora_scale,
strength_cn, # Коэфф. зашумления ControlNet
use_control_net, # Чекбокс для ControlNet
control_strength, # Контроль силы ControlNet
cn_source_image, # Исходное изображение ControlNet
control_image, # Контрольное изображение ControlNet
strength_ip, # Коэфф. зашумления IP_adapter
use_ip_adapter, # Параметр для включения IP_adapter
ip_adapter_strength,# Сила влияния IP_adapter
ip_source_image, # Исходное изображение IP_adapter
ip_adapter_image, # Контрольное изображение IP_adapter
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()
|