Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,7 @@ def get_lora_sd_pipeline(
|
|
38 |
|
39 |
return pipe
|
40 |
|
41 |
-
def
|
42 |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
43 |
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
44 |
|
@@ -79,13 +79,13 @@ def infer(
|
|
79 |
|
80 |
if model_id != model_id_default:
|
81 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
82 |
-
prompt_embeds =
|
83 |
-
negative_prompt_embeds =
|
84 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
85 |
else:
|
86 |
pipe = pipe_default
|
87 |
-
prompt_embeds =
|
88 |
-
negative_prompt_embeds =
|
89 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
90 |
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
91 |
print(f"LoRA scale applied: {lora_scale}")
|
@@ -241,4 +241,3 @@ with gr.Blocks(css=css) as demo:
|
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
demo.launch()
|
244 |
-
|
|
|
38 |
|
39 |
return pipe
|
40 |
|
41 |
+
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
|
42 |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
43 |
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
44 |
|
|
|
79 |
|
80 |
if model_id != model_id_default:
|
81 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
82 |
+
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
83 |
+
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
84 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
85 |
else:
|
86 |
pipe = pipe_default
|
87 |
+
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
88 |
+
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
89 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
90 |
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
91 |
print(f"LoRA scale applied: {lora_scale}")
|
|
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
demo.launch()
|
|