Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
9 |
MAX_IMAGE_SIZE = 1024
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
|
15 |
def get_lora_sd_pipeline(
|
@@ -34,7 +34,6 @@ def get_lora_sd_pipeline(
|
|
34 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
35 |
pipe.unet.set_adapter(adapter_name)
|
36 |
after_params = pipe.unet.parameters()
|
37 |
-
print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
|
38 |
|
39 |
if os.path.exists(text_encoder_sub_dir):
|
40 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
@@ -48,10 +47,8 @@ def get_lora_sd_pipeline(
|
|
48 |
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
|
49 |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
50 |
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
51 |
-
|
52 |
with torch.no_grad():
|
53 |
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s]
|
54 |
-
|
55 |
return torch.cat(embeds, dim=1)
|
56 |
|
57 |
def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
@@ -59,25 +56,25 @@ def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
|
59 |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
60 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
61 |
|
62 |
-
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_man_animestyle', base_model_name_or_path=
|
63 |
|
64 |
def infer(
|
65 |
prompt,
|
66 |
negative_prompt,
|
67 |
width=512,
|
68 |
height=512,
|
69 |
-
num_inference_steps
|
70 |
-
|
71 |
-
seed
|
72 |
-
guidance_scale
|
73 |
-
lora_scale
|
74 |
progress=gr.Progress(track_tqdm=True)
|
75 |
):
|
76 |
|
77 |
generator = torch.Generator(device).manual_seed(seed)
|
78 |
|
79 |
-
if
|
80 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
81 |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
82 |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
83 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
@@ -86,8 +83,6 @@ def infer(
|
|
86 |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
87 |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
88 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
89 |
-
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
90 |
-
print(f"LoRA scale applied: {lora_scale}")
|
91 |
pipe.fuse_lora(lora_scale=lora_scale)
|
92 |
|
93 |
params = {
|
@@ -139,7 +134,7 @@ with gr.Blocks(css=css) as demo:
|
|
139 |
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
|
140 |
|
141 |
with gr.Row():
|
142 |
-
|
143 |
label="Model Selection",
|
144 |
choices=available_models,
|
145 |
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
|
@@ -228,7 +223,7 @@ with gr.Blocks(css=css) as demo:
|
|
228 |
width,
|
229 |
height,
|
230 |
num_inference_steps,
|
231 |
-
|
232 |
seed,
|
233 |
guidance_scale,
|
234 |
lora_scale,
|
|
|
9 |
MAX_IMAGE_SIZE = 1024
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
13 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
|
15 |
def get_lora_sd_pipeline(
|
|
|
34 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
35 |
pipe.unet.set_adapter(adapter_name)
|
36 |
after_params = pipe.unet.parameters()
|
|
|
37 |
|
38 |
if os.path.exists(text_encoder_sub_dir):
|
39 |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
|
|
47 |
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
|
48 |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
49 |
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
|
|
50 |
with torch.no_grad():
|
51 |
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s]
|
|
|
52 |
return torch.cat(embeds, dim=1)
|
53 |
|
54 |
def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
|
|
56 |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
57 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
58 |
|
59 |
+
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
|
60 |
|
61 |
def infer(
|
62 |
prompt,
|
63 |
negative_prompt,
|
64 |
width=512,
|
65 |
height=512,
|
66 |
+
num_inference_steps,
|
67 |
+
model,
|
68 |
+
seed,
|
69 |
+
guidance_scale,
|
70 |
+
lora_scale,
|
71 |
progress=gr.Progress(track_tqdm=True)
|
72 |
):
|
73 |
|
74 |
generator = torch.Generator(device).manual_seed(seed)
|
75 |
|
76 |
+
if model != model_default:
|
77 |
+
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
|
78 |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
79 |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
80 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
|
|
83 |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
|
84 |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
85 |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
|
|
|
|
86 |
pipe.fuse_lora(lora_scale=lora_scale)
|
87 |
|
88 |
params = {
|
|
|
134 |
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
|
135 |
|
136 |
with gr.Row():
|
137 |
+
model = gr.Dropdown(
|
138 |
label="Model Selection",
|
139 |
choices=available_models,
|
140 |
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
|
|
|
223 |
width,
|
224 |
height,
|
225 |
num_inference_steps,
|
226 |
+
model,
|
227 |
seed,
|
228 |
guidance_scale,
|
229 |
lora_scale,
|