Spaces:
Running
Running
File size: 9,177 Bytes
cd25265 a71f5d3 4fafed4 b7b1936 ef9ea85 b7b1936 1d8d0a5 2eb05f5 1d8d0a5 b7b1936 a854895 b7b1936 53f58db a854895 b7b1936 53f58db b7b1936 cb3d765 b7b1936 53f58db b7b1936 53f58db 8e65022 53f58db 8e65022 53f58db 8e65022 53f58db b7b1936 04519b1 b7b1936 0fa9e72 b7b1936 0fa9e72 b7b1936 a854895 bf95b09 a71f5d3 b7b1936 88d7d46 a3e1675 88d7d46 a854895 b7b1936 8b88a4f 1c34f6f b7b1936 2eb05f5 04519b1 b7b1936 04519b1 b7b1936 1c34f6f b7b1936 a71f5d3 9738dce f82fd7b 6725272 9738dce 7d4603f 9738dce a71f5d3 d4bbfb5 735e830 86e6a95 9f58901 b7b1936 2eb05f5 9f58901 b7b1936 9f58901 ef9ea85 b872418 ef9ea85 b872418 b7b1936 a20297c 7d4603f a20297c b872418 ef9ea85 b7b1936 e6ca5c2 a20297c ef9ea85 7d4603f a20297c 9738dce b7b1936 b872418 ef9ea85 b7b1936 ef9ea85 3b0e749 ef9ea85 9738dce b7b1936 2d9fb2b d4bbfb5 a71f5d3 ef9ea85 a71f5d3 ef9ea85 a71f5d3 ef9ea85 a71f5d3 9738dce ef9ea85 90b30ce 2d9fb2b 1152968 a71f5d3 2eb05f5 ef9ea85 b7b1936 a71f5d3 6b9434e a71f5d3 0884ab2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import os
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
def get_lora_sd_pipeline(
lora_dir='./lora_man_animestyle',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default"
):
unet_sub_dir = os.path.join(lora_dir, "unet")
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder")
# Проверка существования директорий LoRA
print(f"LoRA directory exists: {os.path.exists(lora_dir)}")
print(f"UNet LoRA exists: {os.path.exists(unet_sub_dir)}")
print(f"Text encoder LoRA exists: {os.path.exists(text_encoder_sub_dir)}")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Укажите название базовой модели или путь к ней")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
# Логирование параметров до применения LoRA
before_params = list(pipe.unet.parameters())
# Применение LoRA к UNet
if os.path.exists(unet_sub_dir):
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.unet.set_adapter(adapter_name)
# Применение LoRA к текстовому энкодеру (если есть)
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
# Логирование параметров после применения LoRA
after_params = list(pipe.unet.parameters())
print(f"Parameters changed: {before_params != after_params}")
# Детальное сравнение параметров
for i, (param1, param2) in enumerate(zip(before_params, after_params)):
if not torch.equal(param1, param2):
print(f"Parameter {i} changed.")
else:
print(f"Parameter {i} did not change.")
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77):
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
with torch.no_grad():
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s]
return torch.cat(embeds, dim=1)
def align_embeddings(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device)
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model='stable-diffusion-v1-5/stable-diffusion-v1-5',
seed=4,
guidance_scale=7.5,
lora_scale=0.5,
progress=gr.Progress(track_tqdm=True)
):
print(f"Received lora_scale: {lora_scale}") # Лог для проверки значения lora_scale
generator = torch.Generator(device).manual_seed(seed)
if model != model_default:
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
else:
pipe = pipe_default
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
# Логирование параметров до и после применения LoRA
before_params = list(pipe.unet.parameters())
print(f"Applying LoRA with scale: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
after_params = list(pipe.unet.parameters())
print(f"Parameters changed: {before_params != after_params}")
params = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
return pipe(**params).images[0]
examples = [
"A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.",
]
examples_negative = [
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
available_models = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
with gr.Row():
model = gr.Dropdown(
label="Model Selection",
choices=available_models,
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
interactive=True
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=4,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model,
seed,
guidance_scale,
lora_scale,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()
|