File size: 2,647 Bytes
c2f4964
f8898c0
 
 
ef34ed3
c2f4964
f8898c0
642232a
f71bfa4
ef34ed3
 
 
c2f4964
 
 
 
 
 
 
 
 
 
8dd9dba
d04f77a
ef34ed3
c2f4964
 
ef34ed3
c2f4964
 
 
 
ef34ed3
c2f4964
 
 
 
 
 
 
 
8dd9dba
f8898c0
 
8dd9dba
f8898c0
 
c2f4964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef34ed3
 
 
c2f4964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from fastapi import FastAPI, Request, Response, status
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
import time

app = FastAPI()

# Create cache directory
os.makedirs("./model_cache", exist_ok=True)

# Track app status
app_status = {
    "status": "initializing",
    "model_name": "distilgpt2",
    "model_loaded": False,
    "tokenizer_loaded": False,
    "startup_time": time.time(),
    "errors": []
}

# Load model and tokenizer once at startup
model_name = "distilgpt2"  # change this to your own model
try:
    # Try to load tokenizer
    app_status["status"] = "loading_tokenizer"
    tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache", local_files_only=False)
    app_status["tokenizer_loaded"] = True
    
    # Try to load model
    app_status["status"] = "loading_model"
    model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache", local_files_only=False)
    app_status["model_loaded"] = True
    
    app_status["status"] = "ready"
except Exception as e:
    error_msg = f"Error loading model or tokenizer: {str(e)}"
    app_status["status"] = "error"
    app_status["errors"].append(error_msg)
    print(error_msg)

class PromptRequest(BaseModel):
    prompt: str
    max_new_tokens: int = 50

@app.post("/generate")
async def generate_text(req: PromptRequest, response: Response):
    if app_status["status"] != "ready":
        response.status_code = status.HTTP_503_SERVICE_UNAVAILABLE
        return {"error": "Model not ready", "status": app_status["status"]}
    
    try:
        inputs = tokenizer(req.prompt, return_tensors="pt")
        outputs = model.generate(
            **inputs,
            max_new_tokens=req.max_new_tokens,
            do_sample=True,
            temperature=0.8,
            top_p=0.95,
        )
        generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {"generated_text": generated}
    except Exception as e:
        response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR
        return {"error": str(e)}

@app.get("/")
async def root():
    return {"message": "API is running", "status": app_status["status"]}

@app.get("/status")
async def get_status():
    # Calculate uptime
    uptime = time.time() - app_status["startup_time"]
    
    return {
        "status": app_status["status"],
        "model_name": app_status["model_name"],
        "model_loaded": app_status["model_loaded"],
        "tokenizer_loaded": app_status["tokenizer_loaded"],
        "uptime_seconds": uptime,
        "errors": app_status["errors"]
    }