Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Load model and tokenizer once at startup
|
9 |
+
model_name = "gpt2" # change this to your own model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
class PromptRequest(BaseModel):
|
14 |
+
prompt: str
|
15 |
+
max_new_tokens: int = 50
|
16 |
+
|
17 |
+
@app.post("/generate")
|
18 |
+
async def generate_text(req: PromptRequest):
|
19 |
+
inputs = tokenizer(req.prompt, return_tensors="pt")
|
20 |
+
outputs = model.generate(
|
21 |
+
**inputs,
|
22 |
+
max_new_tokens=req.max_new_tokens,
|
23 |
+
do_sample=True,
|
24 |
+
temperature=0.8,
|
25 |
+
top_p=0.95,
|
26 |
+
)
|
27 |
+
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
return {"generated_text": generated}
|