Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,25 @@ from fastapi import FastAPI, Request
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
|
|
|
|
8 |
# Load model and tokenizer once at startup
|
9 |
model_name = "distilgpt2" # change this to your own model
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class PromptRequest(BaseModel):
|
14 |
prompt: str
|
@@ -26,3 +38,7 @@ async def generate_text(req: PromptRequest):
|
|
26 |
)
|
27 |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
return {"generated_text": generated}
|
|
|
|
|
|
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
+
import os
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Create cache directory
|
10 |
+
os.makedirs("./model_cache", exist_ok=True)
|
11 |
+
|
12 |
# Load model and tokenizer once at startup
|
13 |
model_name = "distilgpt2" # change this to your own model
|
14 |
+
try:
|
15 |
+
# Try to load from local cache first
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache", local_files_only=False)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache", local_files_only=False)
|
18 |
+
except OSError as e:
|
19 |
+
print(f"Error loading model: {e}")
|
20 |
+
print("Attempting to download model directly...")
|
21 |
+
# If that fails, try downloading explicitly
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache")
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache")
|
24 |
|
25 |
class PromptRequest(BaseModel):
|
26 |
prompt: str
|
|
|
38 |
)
|
39 |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
return {"generated_text": generated}
|
41 |
+
|
42 |
+
@app.get("/")
|
43 |
+
async def root():
|
44 |
+
return {"status": "API is running", "model": model_name}
|