Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,28 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
-
import os
|
6 |
|
7 |
-
# Define the path where the model is located
|
8 |
-
model_directory = "./tiny-gpt2" # Make sure this is the correct relative or absolute path to your model folder
|
9 |
-
|
10 |
-
# Initialize the model and tokenizer using the correct directory path
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_directory)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_directory)
|
13 |
-
|
14 |
-
# FastAPI app
|
15 |
app = FastAPI()
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
class PromptRequest(BaseModel):
|
18 |
prompt: str
|
19 |
-
max_new_tokens: int = 50
|
20 |
|
21 |
@app.post("/generate")
|
22 |
-
async def generate_text(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
return {"generated_text": generated_text}
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
app = FastAPI()
|
7 |
|
8 |
+
# Load model and tokenizer once at startup
|
9 |
+
model_name = "FlameF0X/Muffin-2.9b-1C25" # change this to your own model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
class PromptRequest(BaseModel):
|
14 |
prompt: str
|
15 |
+
max_new_tokens: int = 50
|
16 |
|
17 |
@app.post("/generate")
|
18 |
+
async def generate_text(req: PromptRequest):
|
19 |
+
inputs = tokenizer(req.prompt, return_tensors="pt")
|
20 |
+
outputs = model.generate(
|
21 |
+
**inputs,
|
22 |
+
max_new_tokens=req.max_new_tokens,
|
23 |
+
do_sample=True,
|
24 |
+
temperature=0.8,
|
25 |
+
top_p=0.95,
|
26 |
+
)
|
27 |
+
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
return {"generated_text": generated}
|
|