File size: 6,415 Bytes
bfca1f5 3ffebe8 599d710 161a31c bfca1f5 70a14b2 161a31c 5628a71 161a31c 5628a71 161a31c aaacbbe 161a31c 5628a71 161a31c 5628a71 161a31c aaacbbe 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c 5628a71 70a14b2 161a31c 5628a71 bfca1f5 161a31c 5628a71 aaacbbe bfca1f5 70a14b2 5c5ce8c bfca1f5 70a14b2 bfca1f5 70a14b2 bfca1f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
import seaborn as sns
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 120
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def bio_mutate(seq):
r = random.random()
if r < 0.70: # Точечная мутация
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80: # Инсерция короткого блока
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90: # Делеция
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else: # Блочная перестановка (инверсия)
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result)!=0 else 1
return result[:10]/norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# --- Streamlit интерфейс ---
st.title("🧬 Эволюция ДНК-подобной последовательности")
st.markdown("Модель визуализирует мутации и анализирует структуру последовательности во времени.")
# Функции для улучшения визуализации
def plot_density(runs, ax, steps):
machine_starts = [start for start, _, _ in runs]
machine_ends = [end for _, end, _ in runs]
timeline = np.zeros(steps)
for start, end, _ in runs:
timeline[start:end+1] = 1
sns.lineplot(x=np.arange(steps), y=timeline, ax=ax, color='darkgreen')
ax.set_title("Плотность биомашин по шагам")
ax.set_xlabel("Шаг")
ax.set_ylabel("Плотность биомашин")
def plot_heatmap(runs, ax, steps):
heatmap_matrix = np.zeros((steps, len(runs)))
for idx, (start, end, _) in enumerate(runs):
heatmap_matrix[start:end+1, idx] = 1
sns.heatmap(heatmap_matrix, ax=ax, cmap="YlGnBu", cbar=True)
ax.set_title("Тепловая карта: Распределение биомашин по времени")
ax.set_xlabel("Номер биомашины")
ax.set_ylabel("Шаг")
def update_visualization(step, seq, runs, torsion_profile, stat_bist_counts, acorr, steps, lags_shown, ent):
fig, axs = plt.subplots(5, 1, figsize=(10, 12))
plt.subplots_adjust(hspace=0.45)
axs[0].cla()
axs[1].cla()
axs[2].cla()
axs[3].cla()
axs[4].cla()
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
axs[0].set_ylim(-200, 200)
axs[0].set_xlabel("Позиция")
axs[0].set_ylabel("Торсионный угол (град.)")
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent:.2f}")
axs[0].legend()
plot_density(runs, axs[3], steps)
plot_heatmap(runs, axs[4], steps)
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_xlabel("Шаг")
axs[1].set_ylabel("Число машин")
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
axs[1].set_title("Динамика: число 'биомашин'")
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal', alpha=0.7)
axs[2].set_xlabel("Лаг")
axs[2].set_ylabel("Автокорреляция")
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
axs[2].text(0.70, 0.70, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)
plot_placeholder.pyplot(fig)
# Кнопка запуска симуляции
if st.button("▶️ Запустить симуляцию"):
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []
plot_placeholder = st.empty()
for step in range(steps):
if step != 0:
seq = bio_mutate(seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
# Обновление визуализаций
update_visualization(step, seq, runs, torsion_profile, stat_bist_counts, acorr, steps, 6, ent)
time.sleep(0.5)
|