Dmtlant commited on
Commit
aaacbbe
·
verified ·
1 Parent(s): 161a31c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -72
app.py CHANGED
@@ -2,15 +2,49 @@ import streamlit as st
2
  import numpy as np
3
  import matplotlib.pyplot as plt
4
  import random
 
5
  from scipy.stats import entropy as scipy_entropy
6
- from io import BytesIO
7
 
8
  # --- НАСТРОЙКИ ---
9
  seqlen = 60
10
- steps = 120
11
  min_run, max_run = 1, 2
12
  ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
13
  bases = ['A', 'C', 'G', 'T']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  # --- ФУНКЦИИ ---
16
  def find_local_min_runs(profile, min_run=1, max_run=2):
@@ -27,6 +61,18 @@ def find_local_min_runs(profile, min_run=1, max_run=2):
27
  i += run_length
28
  return result
29
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  def bio_mutate(seq):
31
  r = random.random()
32
  if r < 0.70:
@@ -40,102 +86,64 @@ def bio_mutate(seq):
40
  else:
41
  newbase = random.choice([b for b in bases if b != orig])
42
  seq = seq[:idx] + newbase + seq[idx+1:]
43
-
44
  elif r < 0.80:
45
  idx = random.randint(0, len(seq)-1)
46
  ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
47
  seq = seq[:idx] + ins + seq[idx:]
48
- seq = seq[:seqlen]
49
-
50
  elif r < 0.90:
51
  if len(seq) > 4:
52
  idx = random.randint(0, len(seq)-2)
53
  dell = random.randint(1, min(3, len(seq)-idx))
54
  seq = seq[:idx] + seq[idx+dell:]
55
-
56
  else:
57
  if len(seq) > 10:
58
  start = random.randint(0, len(seq)-6)
59
  end = start + random.randint(3,6)
60
- subseq = seq[start:end][::-1]
 
61
  seq = seq[:start] + subseq + seq[end:]
62
-
63
  while len(seq) < seqlen:
64
  seq += random.choice(bases)
65
  if len(seq) > seqlen:
66
  seq = seq[:seqlen]
67
  return seq
68
 
69
- def compute_autocorr(profile):
70
- profile = profile - np.mean(profile)
71
- result = np.correlate(profile, profile, mode='full')
72
- result = result[result.size // 2:]
73
- norm = np.max(result) if np.max(result)!=0 else 1
74
- return result[:10]/norm
75
-
76
- def compute_entropy(profile):
77
- vals, counts = np.unique(profile, return_counts=True)
78
- p = counts / counts.sum()
79
- return scipy_entropy(p, base=2)
80
 
81
- def plot_step(seq, step, cnt_hist, ent_hist, ac_hist):
82
- torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
 
 
83
  runs = find_local_min_runs(torsion_profile, min_run, max_run)
84
- fig, axs = plt.subplots(3, 1, figsize=(10, 8))
85
- plt.subplots_adjust(hspace=0.45)
86
 
87
- axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
 
 
 
 
 
 
 
 
88
  for start, end, val in runs:
89
  axs[0].axvspan(start, end, color="red", alpha=0.3)
90
- axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
91
  axs[0].set_ylim(-200, 200)
92
- axs[0].set_xlabel("Позиция")
93
- axs[0].set_ylabel("Торсионный угол (град.)")
94
- axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent_hist[-1]:.2f}")
95
- axs[0].legend()
96
-
97
- axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4)
98
- axs[1].set_xlabel("Шаг")
99
- axs[1].set_ylabel("Число машин")
100
- axs[1].set_ylim(0, max(10, max(cnt_hist)+1))
101
- axs[1].set_title("Динамика: число 'биомашин'")
102
-
103
- axs[2].bar(np.arange(6), ac_hist[-1][:6], color='teal', alpha=0.7)
104
- axs[2].set_xlabel("Лаг")
105
- axs[2].set_ylabel("Автокорреляция")
106
- axs[2].set_title("Автокорреляция углового профиля и энтропия")
107
- axs[2].text(0.70,0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes)
108
-
109
- return fig
110
-
111
- # --- STREAMLIT ---
112
- st.set_page_config(layout="wide")
113
- st.title("\U0001F9EA Торсионное пространство биомашин")
114
 
115
- if 'seq' not in st.session_state:
116
- st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
117
- st.session_state.cnt_hist = []
118
- st.session_state.ent_hist = []
119
- st.session_state.ac_hist = []
120
- st.session_state.step = 0
121
 
122
- if st.button("Следующий шаг мутации"):
123
- st.session_state.seq = bio_mutate(st.session_state.seq)
124
- profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
125
- runs = find_local_min_runs(profile, min_run, max_run)
126
- st.session_state.cnt_hist.append(len(runs))
127
- st.session_state.ent_hist.append(compute_entropy(profile))
128
- st.session_state.ac_hist.append(compute_autocorr(profile))
129
- st.session_state.step += 1
130
 
131
- if st.session_state.step > 0:
132
- fig = plot_step(
133
- st.session_state.seq,
134
- st.session_state.step,
135
- st.session_state.cnt_hist,
136
- st.session_state.ent_hist,
137
- st.session_state.ac_hist
138
- )
139
- st.pyplot(fig)
140
- else:
141
- st.info("Нажмите кнопку, чтобы начать мутацию цепи и наблюдение за торсионными биомашинами.")
 
2
  import numpy as np
3
  import matplotlib.pyplot as plt
4
  import random
5
+ import time
6
  from scipy.stats import entropy as scipy_entropy
 
7
 
8
  # --- НАСТРОЙКИ ---
9
  seqlen = 60
10
+ steps = 10000
11
  min_run, max_run = 1, 2
12
  ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
13
  bases = ['A', 'C', 'G', 'T']
14
+ lags_shown = 6
15
+
16
+ st.set_page_config(layout="wide")
17
+ st.title("🌌 Визуализация торсионных биомашин")
18
+
19
+ # --- ИНТЕРФЕЙС ---
20
+ col1, col2, col3 = st.columns([1,1,2])
21
+ with col1:
22
+ if 'running' not in st.session_state:
23
+ st.session_state.running = False
24
+ if st.button("▶️ Старт / ⏸ Стоп"):
25
+ st.session_state.running = not st.session_state.running
26
+
27
+ with col2:
28
+ if st.button("🔄 Сброс"):
29
+ st.session_state.running = False
30
+ st.session_state.step = 0
31
+ st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
32
+ st.session_state.stat_bist_counts = []
33
+ st.session_state.stat_entropy = []
34
+ st.session_state.stat_autocorr = []
35
+
36
+ with col3:
37
+ speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10)
38
+
39
+ # --- ИНИЦИАЛИЗАЦИЯ ---
40
+ if 'seq' not in st.session_state:
41
+ st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
42
+ if 'step' not in st.session_state:
43
+ st.session_state.step = 0
44
+ if 'stat_bist_counts' not in st.session_state:
45
+ st.session_state.stat_bist_counts = []
46
+ st.session_state.stat_entropy = []
47
+ st.session_state.stat_autocorr = []
48
 
49
  # --- ФУНКЦИИ ---
50
  def find_local_min_runs(profile, min_run=1, max_run=2):
 
61
  i += run_length
62
  return result
63
 
64
+ def compute_autocorr(profile):
65
+ profile = profile - np.mean(profile)
66
+ result = np.correlate(profile, profile, mode='full')
67
+ result = result[result.size // 2:]
68
+ norm = np.max(result) if np.max(result) != 0 else 1
69
+ return result[:10] / norm
70
+
71
+ def compute_entropy(profile):
72
+ vals, counts = np.unique(profile, return_counts=True)
73
+ p = counts / counts.sum()
74
+ return scipy_entropy(p, base=2)
75
+
76
  def bio_mutate(seq):
77
  r = random.random()
78
  if r < 0.70:
 
86
  else:
87
  newbase = random.choice([b for b in bases if b != orig])
88
  seq = seq[:idx] + newbase + seq[idx+1:]
 
89
  elif r < 0.80:
90
  idx = random.randint(0, len(seq)-1)
91
  ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
92
  seq = seq[:idx] + ins + seq[idx:]
93
+ if len(seq) > seqlen:
94
+ seq = seq[:seqlen]
95
  elif r < 0.90:
96
  if len(seq) > 4:
97
  idx = random.randint(0, len(seq)-2)
98
  dell = random.randint(1, min(3, len(seq)-idx))
99
  seq = seq[:idx] + seq[idx+dell:]
 
100
  else:
101
  if len(seq) > 10:
102
  start = random.randint(0, len(seq)-6)
103
  end = start + random.randint(3,6)
104
+ subseq = seq[start:end]
105
+ subseq = subseq[::-1]
106
  seq = seq[:start] + subseq + seq[end:]
 
107
  while len(seq) < seqlen:
108
  seq += random.choice(bases)
109
  if len(seq) > seqlen:
110
  seq = seq[:seqlen]
111
  return seq
112
 
113
+ # --- ВИЗУАЛИЗАЦИЯ ---
114
+ plot_area = st.empty()
115
+ fig, axs = plt.subplots(3, 1, figsize=(10, 8))
116
+ plt.subplots_adjust(hspace=0.5)
 
 
 
 
 
 
 
117
 
118
+ # --- ЦИКЛ ВИЗУАЛИЗАЦИИ ---
119
+ while st.session_state.running:
120
+ st.session_state.seq = bio_mutate(st.session_state.seq)
121
+ torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
122
  runs = find_local_min_runs(torsion_profile, min_run, max_run)
123
+ ent = compute_entropy(torsion_profile)
124
+ acorr = compute_autocorr(torsion_profile)
125
 
126
+ st.session_state.stat_bist_counts = st.session_state.stat_bist_counts[-50:] + [len(runs)]
127
+ st.session_state.stat_entropy = st.session_state.stat_entropy[-50:] + [ent]
128
+ st.session_state.stat_autocorr = st.session_state.stat_autocorr[-50:] + [acorr]
129
+
130
+ axs[0].cla()
131
+ axs[1].cla()
132
+ axs[2].cla()
133
+
134
+ axs[0].plot(torsion_profile, color='royalblue')
135
  for start, end, val in runs:
136
  axs[0].axvspan(start, end, color="red", alpha=0.3)
137
+ axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
138
  axs[0].set_ylim(-200, 200)
139
+ axs[0].set_title(f"Шаг {st.session_state.step}: {st.session_state.seq}\nМашин: {len(runs)}, Энтропия: {ent:.2f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
+ axs[1].plot(st.session_state.stat_bist_counts, '-o', color='crimson', markersize=4)
142
+ axs[1].set_title("Число 'биомашин'")
 
 
 
 
143
 
144
+ axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal')
145
+ axs[2].set_title("Автокорреляция углового профиля")
 
 
 
 
 
 
146
 
147
+ plot_area.pyplot(fig, clear_figure=True)
148
+ st.session_state.step += 1
149
+ time.sleep(speed / 1000.0)