Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,16 @@
|
|
1 |
-
import streamlit as st
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
|
|
4 |
import random
|
5 |
-
import time
|
6 |
from scipy.stats import entropy as scipy_entropy
|
7 |
|
8 |
-
#
|
9 |
seqlen = 60
|
|
|
10 |
min_run, max_run = 1, 2
|
11 |
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
12 |
bases = ['A', 'C', 'G', 'T']
|
13 |
-
lags_shown = 6
|
14 |
|
15 |
-
st.set_page_config(layout="wide")
|
16 |
-
st.title("🌌 Визуализация торсионных биомашин")
|
17 |
-
|
18 |
-
# UI
|
19 |
-
col1, col2, col3 = st.columns([1,1,2])
|
20 |
-
with col1:
|
21 |
-
if 'running' not in st.session_state:
|
22 |
-
st.session_state.running = False
|
23 |
-
if st.button("▶️ Старт / ⏸ Стоп"):
|
24 |
-
st.session_state.running = not st.session_state.running
|
25 |
-
|
26 |
-
with col2:
|
27 |
-
if st.button("🔄 Сброс"):
|
28 |
-
st.session_state.running = False
|
29 |
-
st.session_state.step = 0
|
30 |
-
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
|
31 |
-
st.session_state.stat_bist_counts = []
|
32 |
-
st.session_state.stat_entropy = []
|
33 |
-
st.session_state.stat_autocorr = []
|
34 |
-
|
35 |
-
with col3:
|
36 |
-
speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10)
|
37 |
-
|
38 |
-
# Init
|
39 |
-
if 'seq' not in st.session_state:
|
40 |
-
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
|
41 |
-
if 'step' not in st.session_state:
|
42 |
-
st.session_state.step = 0
|
43 |
-
if 'stat_bist_counts' not in st.session_state:
|
44 |
-
st.session_state.stat_bist_counts = []
|
45 |
-
st.session_state.stat_entropy = []
|
46 |
-
st.session_state.stat_autocorr = []
|
47 |
-
|
48 |
-
# Функции
|
49 |
def find_local_min_runs(profile, min_run=1, max_run=2):
|
50 |
result = []
|
51 |
N = len(profile)
|
@@ -60,21 +25,10 @@ def find_local_min_runs(profile, min_run=1, max_run=2):
|
|
60 |
i += run_length
|
61 |
return result
|
62 |
|
63 |
-
|
64 |
-
profile = profile - np.mean(profile)
|
65 |
-
result = np.correlate(profile, profile, mode='full')
|
66 |
-
result = result[result.size // 2:]
|
67 |
-
norm = np.max(result) if np.max(result) != 0 else 1
|
68 |
-
return result[:10] / norm
|
69 |
-
|
70 |
-
def compute_entropy(profile):
|
71 |
-
vals, counts = np.unique(profile, return_counts=True)
|
72 |
-
p = counts / counts.sum()
|
73 |
-
return scipy_entropy(p, base=2)
|
74 |
-
|
75 |
def bio_mutate(seq):
|
76 |
r = random.random()
|
77 |
-
if r < 0.70:
|
78 |
idx = random.randint(0, len(seq)-1)
|
79 |
orig = seq[idx]
|
80 |
prob = random.random()
|
@@ -85,60 +39,133 @@ def bio_mutate(seq):
|
|
85 |
else:
|
86 |
newbase = random.choice([b for b in bases if b != orig])
|
87 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
88 |
-
|
|
|
89 |
idx = random.randint(0, len(seq)-1)
|
90 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
91 |
seq = seq[:idx] + ins + seq[idx:]
|
92 |
if len(seq) > seqlen:
|
93 |
seq = seq[:seqlen]
|
94 |
-
|
|
|
95 |
if len(seq) > 4:
|
96 |
idx = random.randint(0, len(seq)-2)
|
97 |
dell = random.randint(1, min(3, len(seq)-idx))
|
98 |
seq = seq[:idx] + seq[idx+dell:]
|
99 |
-
|
|
|
100 |
if len(seq) > 10:
|
101 |
start = random.randint(0, len(seq)-6)
|
102 |
end = start + random.randint(3,6)
|
103 |
-
subseq = seq[start:end]
|
|
|
104 |
seq = seq[:start] + subseq + seq[end:]
|
105 |
while len(seq) < seqlen:
|
106 |
seq += random.choice(bases)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
plot_area = st.empty()
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
acorr = compute_autocorr(torsion_profile)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
for start, end, val in runs:
|
131 |
axs[0].axvspan(start, end, color="red", alpha=0.3)
|
132 |
-
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=
|
133 |
axs[0].set_ylim(-200, 200)
|
134 |
-
axs[0].
|
135 |
-
|
136 |
-
axs[
|
137 |
-
axs[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
|
|
141 |
|
142 |
-
|
143 |
-
st.session_state.step += 1
|
144 |
-
time.sleep(speed / 1000.0)
|
|
|
|
|
1 |
import numpy as np
|
2 |
import matplotlib.pyplot as plt
|
3 |
+
from matplotlib.animation import FuncAnimation
|
4 |
import random
|
|
|
5 |
from scipy.stats import entropy as scipy_entropy
|
6 |
|
7 |
+
# --- НАСТРОЙКИ ---
|
8 |
seqlen = 60
|
9 |
+
steps = 120
|
10 |
min_run, max_run = 1, 2
|
11 |
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
12 |
bases = ['A', 'C', 'G', 'T']
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def find_local_min_runs(profile, min_run=1, max_run=2):
|
15 |
result = []
|
16 |
N = len(profile)
|
|
|
25 |
i += run_length
|
26 |
return result
|
27 |
|
28 |
+
# --- Более биологичные мутации ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def bio_mutate(seq):
|
30 |
r = random.random()
|
31 |
+
if r < 0.70: # Точечная мутация
|
32 |
idx = random.randint(0, len(seq)-1)
|
33 |
orig = seq[idx]
|
34 |
prob = random.random()
|
|
|
39 |
else:
|
40 |
newbase = random.choice([b for b in bases if b != orig])
|
41 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
42 |
+
|
43 |
+
elif r < 0.80: # Инсерция короткого блока
|
44 |
idx = random.randint(0, len(seq)-1)
|
45 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
46 |
seq = seq[:idx] + ins + seq[idx:]
|
47 |
if len(seq) > seqlen:
|
48 |
seq = seq[:seqlen]
|
49 |
+
|
50 |
+
elif r < 0.90: # Делеция
|
51 |
if len(seq) > 4:
|
52 |
idx = random.randint(0, len(seq)-2)
|
53 |
dell = random.randint(1, min(3, len(seq)-idx))
|
54 |
seq = seq[:idx] + seq[idx+dell:]
|
55 |
+
|
56 |
+
else: # Блочная перестановка (инверсия)
|
57 |
if len(seq) > 10:
|
58 |
start = random.randint(0, len(seq)-6)
|
59 |
end = start + random.randint(3,6)
|
60 |
+
subseq = seq[start:end]
|
61 |
+
subseq = subseq[::-1]
|
62 |
seq = seq[:start] + subseq + seq[end:]
|
63 |
while len(seq) < seqlen:
|
64 |
seq += random.choice(bases)
|
65 |
+
if len(seq) > seqlen:
|
66 |
+
seq = seq[:seqlen]
|
67 |
+
return seq
|
|
|
68 |
|
69 |
+
def compute_autocorr(profile):
|
70 |
+
profile = profile - np.mean(profile)
|
71 |
+
result = np.correlate(profile, profile, mode='full')
|
72 |
+
result = result[result.size // 2:]
|
73 |
+
norm = np.max(result) if np.max(result)!=0 else 1
|
74 |
+
return result[:10]/norm # только лаги 0..9
|
|
|
75 |
|
76 |
+
def compute_entropy(profile):
|
77 |
+
vals, counts = np.unique(profile, return_counts=True)
|
78 |
+
p = counts / counts.sum()
|
79 |
+
return scipy_entropy(p, base=2)
|
80 |
|
81 |
+
# --- Дополнительный анализ стромбистов ---
|
82 |
+
def analyze_strombists(runs, seqlen):
|
83 |
+
counts = len(runs)
|
84 |
+
lengths = [end - start + 1 for start, end, _ in runs]
|
85 |
+
angle_freq = {}
|
86 |
+
heatmap_row = np.zeros(seqlen)
|
87 |
+
for start, end, val in runs:
|
88 |
+
for pos in range(start, end + 1):
|
89 |
+
heatmap_row[pos] = 1
|
90 |
+
angle_freq[val] = angle_freq.get(val, 0) + 1
|
91 |
+
return counts, lengths, angle_freq, heatmap_row
|
92 |
+
|
93 |
+
# --- Начальная цепь ---
|
94 |
+
seq = ''.join(random.choices(bases, k=seqlen))
|
95 |
+
stat_bist_counts = []
|
96 |
+
stat_entropy = []
|
97 |
+
stat_autocorr = []
|
98 |
+
stat_strombists = []
|
99 |
+
|
100 |
+
fig, axs = plt.subplots(4, 1, figsize=(10, 10))
|
101 |
+
plt.subplots_adjust(hspace=0.45)
|
102 |
+
lags_shown = 6
|
103 |
|
104 |
+
def draw_world(seq, axs, step, cnt_hist, ent_hist, ac_hist, st_hist):
|
105 |
+
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
106 |
+
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
107 |
+
st_count, st_lengths, st_angle_freq, st_heatmap_row = analyze_strombists(runs, seqlen)
|
108 |
+
|
109 |
+
axs[0].cla()
|
110 |
+
axs[1].cla()
|
111 |
+
axs[2].cla()
|
112 |
+
axs[3].cla()
|
113 |
+
|
114 |
+
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
|
115 |
for start, end, val in runs:
|
116 |
axs[0].axvspan(start, end, color="red", alpha=0.3)
|
117 |
+
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
|
118 |
axs[0].set_ylim(-200, 200)
|
119 |
+
axs[0].set_xlabel("Позиция")
|
120 |
+
axs[0].set_ylabel("Торсионный угол (град.)")
|
121 |
+
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {st_count}, энтропия: {ent_hist[-1]:.2f}")
|
122 |
+
axs[0].legend()
|
123 |
+
|
124 |
+
# История динамики "машин"
|
125 |
+
axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4)
|
126 |
+
axs[1].set_xlabel("Шаг")
|
127 |
+
axs[1].set_ylabel("Число машин")
|
128 |
+
axs[1].set_ylim(0, max(10, max(cnt_hist)+1))
|
129 |
+
axs[1].set_title("Динамика: число 'биомашин'")
|
130 |
+
|
131 |
+
# Автокорреляция для текущего шага
|
132 |
+
axs[2].bar(np.arange(lags_shown), ac_hist[-1][:lags_shown], color='teal', alpha=0.7)
|
133 |
+
axs[2].set_xlabel("Лаг")
|
134 |
+
axs[2].set_ylabel("Автокорреляция")
|
135 |
+
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
|
136 |
+
axs[2].text(0.70, 0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes)
|
137 |
+
|
138 |
+
# Карта стромбистов
|
139 |
+
axs[3].plot(st_heatmap_row, color='orange', label="Карта стромбистов", linewidth=2)
|
140 |
+
axs[3].set_ylim(0, 1)
|
141 |
+
axs[3].set_xlabel("Позиция")
|
142 |
+
axs[3].set_ylabel("Стромбист (1 - стабильность)")
|
143 |
+
axs[3].set_title(f"Карты стромбистов на шаге {step}")
|
144 |
+
axs[3].legend()
|
145 |
+
|
146 |
+
def animate(i):
|
147 |
+
global seq, stat_bist_counts, stat_entropy, stat_autocorr, stat_strombists
|
148 |
+
if i == 0:
|
149 |
+
stat_bist_counts.clear()
|
150 |
+
stat_entropy.clear()
|
151 |
+
stat_autocorr.clear()
|
152 |
+
stat_strombists.clear()
|
153 |
+
else:
|
154 |
+
seq = bio_mutate(seq)
|
155 |
+
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
156 |
+
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
157 |
+
stat_bist_counts.append(len(runs))
|
158 |
+
ent = compute_entropy(torsion_profile)
|
159 |
+
stat_entropy.append(ent)
|
160 |
+
acorr = compute_autocorr(torsion_profile)
|
161 |
+
stat_autocorr.append(acorr)
|
162 |
+
st_count, st_lengths, st_angle_freq, st_heatmap_row = analyze_strombists(runs, seqlen)
|
163 |
+
stat_strombists.append((st_count, st_lengths, st_angle_freq))
|
164 |
+
draw_world(seq, axs, i, stat_bist_counts, stat_entropy, stat_autocorr, stat_strombists)
|
165 |
+
return axs
|
166 |
|
167 |
+
anim = FuncAnimation(
|
168 |
+
fig, animate, frames=steps, interval=600, repeat=False, blit=False
|
169 |
+
)
|
170 |
|
171 |
+
plt.show()
|
|
|
|