Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import matplotlib.pyplot as plt
|
3 |
-
from matplotlib.animation import FuncAnimation
|
4 |
import random
|
5 |
from scipy.stats import entropy as scipy_entropy
|
|
|
6 |
|
7 |
# --- НАСТРОЙКИ ---
|
8 |
seqlen = 60
|
@@ -25,7 +26,6 @@ def find_local_min_runs(profile, min_run=1, max_run=2):
|
|
25 |
i += run_length
|
26 |
return result
|
27 |
|
28 |
-
# --- Более биологичные мутации ---
|
29 |
def bio_mutate(seq):
|
30 |
r = random.random()
|
31 |
if r < 0.70: # Точечная мутация
|
@@ -39,20 +39,17 @@ def bio_mutate(seq):
|
|
39 |
else:
|
40 |
newbase = random.choice([b for b in bases if b != orig])
|
41 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
42 |
-
|
43 |
elif r < 0.80: # Инсерция короткого блока
|
44 |
idx = random.randint(0, len(seq)-1)
|
45 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
46 |
seq = seq[:idx] + ins + seq[idx:]
|
47 |
if len(seq) > seqlen:
|
48 |
seq = seq[:seqlen]
|
49 |
-
|
50 |
elif r < 0.90: # Делеция
|
51 |
if len(seq) > 4:
|
52 |
idx = random.randint(0, len(seq)-2)
|
53 |
dell = random.randint(1, min(3, len(seq)-idx))
|
54 |
seq = seq[:idx] + seq[idx+dell:]
|
55 |
-
|
56 |
else: # Блочная перестановка (инверсия)
|
57 |
if len(seq) > 10:
|
58 |
start = random.randint(0, len(seq)-6)
|
@@ -71,101 +68,66 @@ def compute_autocorr(profile):
|
|
71 |
result = np.correlate(profile, profile, mode='full')
|
72 |
result = result[result.size // 2:]
|
73 |
norm = np.max(result) if np.max(result)!=0 else 1
|
74 |
-
return result[:10]/norm
|
75 |
|
76 |
def compute_entropy(profile):
|
77 |
vals, counts = np.unique(profile, return_counts=True)
|
78 |
p = counts / counts.sum()
|
79 |
return scipy_entropy(p, base=2)
|
80 |
|
81 |
-
# ---
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
axs[0].
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
# Карта стромбистов
|
139 |
-
axs[3].plot(st_heatmap_row, color='orange', label="Карта стромбистов", linewidth=2)
|
140 |
-
axs[3].set_ylim(0, 1)
|
141 |
-
axs[3].set_xlabel("Позиция")
|
142 |
-
axs[3].set_ylabel("Стромбист (1 - стабильность)")
|
143 |
-
axs[3].set_title(f"Карты стромбистов на шаге {step}")
|
144 |
-
axs[3].legend()
|
145 |
-
|
146 |
-
def animate(i):
|
147 |
-
global seq, stat_bist_counts, stat_entropy, stat_autocorr, stat_strombists
|
148 |
-
if i == 0:
|
149 |
-
stat_bist_counts.clear()
|
150 |
-
stat_entropy.clear()
|
151 |
-
stat_autocorr.clear()
|
152 |
-
stat_strombists.clear()
|
153 |
-
else:
|
154 |
-
seq = bio_mutate(seq)
|
155 |
-
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
156 |
-
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
157 |
-
stat_bist_counts.append(len(runs))
|
158 |
-
ent = compute_entropy(torsion_profile)
|
159 |
-
stat_entropy.append(ent)
|
160 |
-
acorr = compute_autocorr(torsion_profile)
|
161 |
-
stat_autocorr.append(acorr)
|
162 |
-
st_count, st_lengths, st_angle_freq, st_heatmap_row = analyze_strombists(runs, seqlen)
|
163 |
-
stat_strombists.append((st_count, st_lengths, st_angle_freq))
|
164 |
-
draw_world(seq, axs, i, stat_bist_counts, stat_entropy, stat_autocorr, stat_strombists)
|
165 |
-
return axs
|
166 |
-
|
167 |
-
anim = FuncAnimation(
|
168 |
-
fig, animate, frames=steps, interval=600, repeat=False, blit=False
|
169 |
-
)
|
170 |
-
|
171 |
-
plt.show()
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
|
|
4 |
import random
|
5 |
from scipy.stats import entropy as scipy_entropy
|
6 |
+
import time
|
7 |
|
8 |
# --- НАСТРОЙКИ ---
|
9 |
seqlen = 60
|
|
|
26 |
i += run_length
|
27 |
return result
|
28 |
|
|
|
29 |
def bio_mutate(seq):
|
30 |
r = random.random()
|
31 |
if r < 0.70: # Точечная мутация
|
|
|
39 |
else:
|
40 |
newbase = random.choice([b for b in bases if b != orig])
|
41 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
|
|
42 |
elif r < 0.80: # Инсерция короткого блока
|
43 |
idx = random.randint(0, len(seq)-1)
|
44 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
45 |
seq = seq[:idx] + ins + seq[idx:]
|
46 |
if len(seq) > seqlen:
|
47 |
seq = seq[:seqlen]
|
|
|
48 |
elif r < 0.90: # Делеция
|
49 |
if len(seq) > 4:
|
50 |
idx = random.randint(0, len(seq)-2)
|
51 |
dell = random.randint(1, min(3, len(seq)-idx))
|
52 |
seq = seq[:idx] + seq[idx+dell:]
|
|
|
53 |
else: # Блочная перестановка (инверсия)
|
54 |
if len(seq) > 10:
|
55 |
start = random.randint(0, len(seq)-6)
|
|
|
68 |
result = np.correlate(profile, profile, mode='full')
|
69 |
result = result[result.size // 2:]
|
70 |
norm = np.max(result) if np.max(result)!=0 else 1
|
71 |
+
return result[:10]/norm
|
72 |
|
73 |
def compute_entropy(profile):
|
74 |
vals, counts = np.unique(profile, return_counts=True)
|
75 |
p = counts / counts.sum()
|
76 |
return scipy_entropy(p, base=2)
|
77 |
|
78 |
+
# --- Streamlit интерфейс ---
|
79 |
+
st.title("🧬 Эволюция ДНК-подобной последовательности")
|
80 |
+
st.markdown("Модель визуализирует мутации и анализирует структуру последовательности во времени.")
|
81 |
+
|
82 |
+
# Кнопка запуска симуляции
|
83 |
+
if st.button("▶️ Запустить симуляцию"):
|
84 |
+
seq = ''.join(random.choices(bases, k=seqlen))
|
85 |
+
stat_bist_counts = []
|
86 |
+
stat_entropy = []
|
87 |
+
stat_autocorr = []
|
88 |
+
|
89 |
+
plot_placeholder = st.empty()
|
90 |
+
|
91 |
+
for step in range(steps):
|
92 |
+
if step != 0:
|
93 |
+
seq = bio_mutate(seq)
|
94 |
+
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
95 |
+
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
96 |
+
stat_bist_counts.append(len(runs))
|
97 |
+
ent = compute_entropy(torsion_profile)
|
98 |
+
stat_entropy.append(ent)
|
99 |
+
acorr = compute_autocorr(torsion_profile)
|
100 |
+
|
101 |
+
# Визуализация
|
102 |
+
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
|
103 |
+
plt.subplots_adjust(hspace=0.45)
|
104 |
+
lags_shown = 6
|
105 |
+
|
106 |
+
axs[0].cla()
|
107 |
+
axs[1].cla()
|
108 |
+
axs[2].cla()
|
109 |
+
|
110 |
+
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
|
111 |
+
for start, end, val in runs:
|
112 |
+
axs[0].axvspan(start, end, color="red", alpha=0.3)
|
113 |
+
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
|
114 |
+
axs[0].set_ylim(-200, 200)
|
115 |
+
axs[0].set_xlabel("Позиция")
|
116 |
+
axs[0].set_ylabel("Торсионный угол (град.)")
|
117 |
+
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent:.2f}")
|
118 |
+
axs[0].legend()
|
119 |
+
|
120 |
+
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
|
121 |
+
axs[1].set_xlabel("Шаг")
|
122 |
+
axs[1].set_ylabel("Число машин")
|
123 |
+
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
|
124 |
+
axs[1].set_title("Динамика: число 'биомашин'")
|
125 |
+
|
126 |
+
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal', alpha=0.7)
|
127 |
+
axs[2].set_xlabel("Лаг")
|
128 |
+
axs[2].set_ylabel("Автокорреляция")
|
129 |
+
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
|
130 |
+
axs[2].text(0.70,0.70, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)
|
131 |
+
|
132 |
+
plot_placeholder.pyplot(fig)
|
133 |
+
time.sleep(0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|