File size: 6,496 Bytes
bfca1f5 3ffebe8 599d710 161a31c bfca1f5 161a31c 5628a71 161a31c 5628a71 161a31c aaacbbe 161a31c 774b580 5628a71 774b580 161a31c 5628a71 774b580 161a31c aaacbbe 5628a71 774b580 161a31c 5628a71 774b580 161a31c 5628a71 161a31c 5628a71 774b580 161a31c 5628a71 bfca1f5 161a31c 5628a71 aaacbbe bfca1f5 774b580 5c5ce8c bfca1f5 774b580 bfca1f5 774b580 bfca1f5 774b580 bfca1f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 120
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def bio_mutate(seq):
r = random.random()
mutation_type = None
if r < 0.70: # Точечная мутация
mutation_type = 'Point Mutation'
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80: # Инсерция короткого блока
mutation_type = 'Insertion'
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90: # Делеция
mutation_type = 'Deletion'
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else: # Блочная перестановка (инверсия)
mutation_type = 'Block Inversion'
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq, mutation_type
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result)!=0 else 1
return result[:10]/norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# --- Streamlit интерфейс ---
st.title("🧬 Эволюция ДНК-подобной последовательности")
st.markdown("Модель визуализирует мутации и анализирует структуру последовательности во времени.")
# Настройка параметров симуляции
st.sidebar.header("Настройки симуляции")
steps = st.sidebar.slider("Шаги симуляции", min_value=50, max_value=300, value=120)
seqlen = st.sidebar.slider("Длина последовательности", min_value=40, max_value=100, value=60)
min_run = st.sidebar.slider("Мин. длина биомашины", min_value=1, max_value=5, value=1)
max_run = st.sidebar.slider("Макс. длина биомашины", min_value=2, max_value=10, value=2)
# Кнопка запуска симуляции
if st.button("▶️ Запустить симуляцию"):
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []
mutation_types = []
plot_placeholder = st.empty()
for step in range(steps):
if step != 0:
seq, mutation_type = bio_mutate(seq)
mutation_types.append(mutation_type)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
# Визуализация
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.45)
lags_shown = 6
axs[0].cla()
axs[1].cla()
axs[2].cla()
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
axs[0].set_ylim(-200, 200)
axs[0].set_xlabel("Позиция")
axs[0].set_ylabel("Торсионный угол (град.)")
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent:.2f}")
axs[0].legend()
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_xlabel("Шаг")
axs[1].set_ylabel("Число машин")
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
axs[1].set_title("Динамика: число 'биомашин'")
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal', alpha=0.7)
axs[2].set_xlabel("Лаг")
axs[2].set_ylabel("Автокорреляция")
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
axs[2].text(0.70, 0.70, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)
# Тепловая карта мутаций
fig2, ax2 = plt.subplots(figsize=(10, 2))
ax2.imshow([mutation_types], aspect='auto', cmap='coolwarm', interpolation='nearest')
ax2.set_yticks([])
ax2.set_xticks(range(steps))
ax2.set_xticklabels(range(steps), rotation=90)
ax2.set_xlabel('Шаги симуляции')
ax2.set_title('Тепловая карта типов мутаций')
plot_placeholder.pyplot(fig)
plot_placeholder.pyplot(fig2)
time.sleep(0.5)
|