File size: 5,216 Bytes
781c86d 10e9b7d 781c86d 10e9b7d fc7015b 781c86d 78f636a 09b53af b5ed0c0 781c86d fc7015b 781c86d fc7015b 7df20a1 dec881c 781c86d 31a5120 781c86d dccb212 31a5120 dec881c 4021bf3 dec881c e80aab9 31243f4 781c86d 31243f4 dec881c 6ac8934 54c62fb 3c4371f eccf8e4 31243f4 7d65c66 dec881c 6ac8934 31243f4 dec881c 6ac8934 dec881c 31243f4 6ac8934 31243f4 dec881c 6ac8934 dec881c 31243f4 dec881c 31243f4 dec881c 31243f4 dec881c 54c62fb e80aab9 dec881c 31243f4 dec881c e80aab9 dec881c 7d65c66 dec881c e80aab9 dec881c e80aab9 fc7015b dec881c fc7015b dec881c fc7015b dec881c e80aab9 fc7015b dec881c fc7015b dec881c fc7015b dec881c fc7015b dec881c fc7015b dec881c fc7015b dec881c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
import time
from langchain_core.messages import HumanMessage
from agent import build_graph
import re
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
cached_answers = []
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
self.graph = build_graph()
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
messages = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": messages})
full_output = result["messages"][-1].content.strip()
# Enforce strict FINAL ANSWER format parsing
match = re.search(r"FINAL ANSWER:\s*(.+)", full_output, re.IGNORECASE)
if match:
return match.group(0).strip() # Returns the entire "FINAL ANSWER: xxx"
else:
print(" FINAL ANSWER not found in output, returning fallback.")
return "FINAL ANSWER: unknown"
def run_agent_only(profile: gr.OAuthProfile | None):
global cached_answers
cached_answers = []
results_log = []
if not profile:
return "Please login first.", None
try:
agent = BasicAgent()
except Exception as e:
return f"Agent Init Error: {e}", None
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=15)
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read().strip()
for item in questions_data:
task_id = item.get("task_id")
question = item.get("question")
file_name = item.get("file_name")
if not task_id or question is None:
continue
try:
user_message = question
if file_name:
user_message += f"\n\nFile to use: {file_name}"
full_input = system_prompt + "\n\n" + user_message
answer = agent(full_input)
cached_answers.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}"})
return "Agent finished. Now click 'Submit Cached Answers'", pd.DataFrame(results_log)
def submit_cached_answers(profile: gr.OAuthProfile | None):
global cached_answers
if not profile or not cached_answers:
return "No cached answers to submit. Run the agent first.", None
space_id = os.getenv("SPACE_ID")
username = profile.username
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
payload = {
"username": username,
"agent_code": agent_code,
"answers": cached_answers
}
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.post(submit_url, json=payload, timeout=60)
result = response.json()
final_status = (
f"Submission Successful!\nUser: {result.get('username')}\n"
f"Score: {result.get('score', 'N/A')}% ({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})"
)
return final_status, None
except Exception as e:
return f"Submission failed: {e}", None
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Run the Agent to generate answers to all questions.
2. Then click 'Submit Cached Answers' to submit them for scoring.
""")
gr.LoginButton()
run_button = gr.Button("🧠 Run Agent Only")
submit_button = gr.Button("📤 Submit Cached Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_agent_only, outputs=[status_output, results_table])
submit_button.click(fn=submit_cached_answers, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ No SPACE_HOST found.")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ No SPACE_ID found.")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)
|