Commit
·
781c86d
1
Parent(s):
09b53af
switched to Langgrah
Browse files- app.py +29 -262
- requirements.txt +5 -11
app.py
CHANGED
@@ -1,249 +1,44 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
import requests
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import whisper
|
10 |
-
from typing import Optional
|
11 |
-
from bs4 import BeautifulSoup
|
12 |
-
from duckduckgo_search import DDGS
|
13 |
-
from smolagents import CodeAgent, tool
|
14 |
-
|
15 |
-
# (Keep Constants as is)
|
16 |
-
# --- Constants ---
|
17 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
18 |
-
|
19 |
-
# --- Basic Agent Definition ---
|
20 |
-
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
21 |
-
class ClaudeServerModel:
|
22 |
-
"""
|
23 |
-
ClaudeServerModel wraps Anthropic Claude API for smolagents-style usage.
|
24 |
-
"""
|
25 |
-
|
26 |
-
def __init__(self, api_key: str, model_id: str = "claude-3-opus-20240229", temperature: float = 0.0):
|
27 |
-
self.api_key = api_key
|
28 |
-
self.model_id = model_id
|
29 |
-
self.temperature = temperature
|
30 |
-
|
31 |
-
def complete(self, prompt: str, stop_sequences: list[str] = None) -> str:
|
32 |
-
headers = {
|
33 |
-
"x-api-key": self.api_key,
|
34 |
-
"anthropic-version": "2023-06-01",
|
35 |
-
"content-type": "application/json"
|
36 |
-
}
|
37 |
-
|
38 |
-
body = {
|
39 |
-
"model": self.model_id,
|
40 |
-
"max_tokens": 1024,
|
41 |
-
"temperature": self.temperature,
|
42 |
-
"prompt": f"\n\nHuman: {prompt}\n\nAssistant:"
|
43 |
-
}
|
44 |
-
|
45 |
-
# Claude expects stop_sequences as "stop_sequences", if passed
|
46 |
-
if stop_sequences:
|
47 |
-
body["stop_sequences"] = stop_sequences
|
48 |
|
49 |
-
response = requests.post("https://api.anthropic.com/v1/complete", headers=headers, json=body)
|
50 |
-
response.raise_for_status()
|
51 |
-
return response.json()["completion"].strip()
|
52 |
|
53 |
-
def __call__(self, prompt: str, stop_sequences: list[str] = None) -> str:
|
54 |
-
return self.complete(prompt, stop_sequences=stop_sequences)
|
55 |
|
|
|
56 |
# --- Constants ---
|
57 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}"
|
62 |
-
r = requests.get(url)
|
63 |
-
with open(file_name, "wb") as f:
|
64 |
-
f.write(r.content)
|
65 |
-
|
66 |
-
@tool
|
67 |
-
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str:
|
68 |
-
"""
|
69 |
-
Opens and reads a file based on its type.
|
70 |
-
|
71 |
-
Args:
|
72 |
-
file_name (str): The name of the file to open (should be available after download).
|
73 |
-
filetype (Optional[str]): The type of file - one of 'txt', 'json', 'csv', 'xlsx', or 'mp3'. Defaults to 'txt'.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
str: File content as text, or transcription if an audio file.
|
77 |
-
"""
|
78 |
-
download_file(file_name)
|
79 |
-
try:
|
80 |
-
if filetype == "txt":
|
81 |
-
with open(file_name, "r", encoding="utf-8") as f:
|
82 |
-
return f.read()
|
83 |
-
elif filetype == "json":
|
84 |
-
with open(file_name, "r", encoding="utf-8") as f:
|
85 |
-
data = json.load(f)
|
86 |
-
return json.dumps(data, indent=2)
|
87 |
-
elif filetype == "csv":
|
88 |
-
with open(file_name, "r", encoding="utf-8") as f:
|
89 |
-
reader = csv.reader(f)
|
90 |
-
rows = list(reader)
|
91 |
-
return "\n".join([", ".join(row) for row in rows])
|
92 |
-
elif filetype == "xlsx":
|
93 |
-
wb = openpyxl.load_workbook(file_name, data_only=True)
|
94 |
-
sheet = wb.active
|
95 |
-
content = []
|
96 |
-
for row in sheet.iter_rows(values_only=True):
|
97 |
-
content.append(", ".join(str(cell) if cell is not None else "" for cell in row))
|
98 |
-
return "\n".join(content)
|
99 |
-
elif filetype == "mp3":
|
100 |
-
w = whisper.load_model("base")
|
101 |
-
res = w.transcribe(file_name)
|
102 |
-
return res["text"]
|
103 |
-
else:
|
104 |
-
return f"Unsupported filetype '{filetype}'."
|
105 |
-
except Exception as e:
|
106 |
-
return f"Error opening file '{file_name}': {str(e)}"
|
107 |
-
|
108 |
-
|
109 |
-
@tool
|
110 |
-
def web_search(query: str) -> str:
|
111 |
-
"""
|
112 |
-
Performs a web search using DuckDuckGo and returns the top results.
|
113 |
-
|
114 |
-
Args:
|
115 |
-
query (str): Search query string.
|
116 |
-
|
117 |
-
Returns:
|
118 |
-
str: Top search results formatted as title, snippet, and URL.
|
119 |
-
"""
|
120 |
-
try:
|
121 |
-
with DDGS() as ddgs:
|
122 |
-
results = ddgs.text(query, max_results=3)
|
123 |
-
if not results:
|
124 |
-
return "No results found."
|
125 |
-
return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results])
|
126 |
-
except Exception as e:
|
127 |
-
return f"Error during search: {str(e)}"
|
128 |
-
|
129 |
-
|
130 |
-
@tool
|
131 |
-
def read_wikipedia_page(url: str) -> str:
|
132 |
-
"""
|
133 |
-
Reads and extracts clean text content from a Wikipedia page.
|
134 |
-
|
135 |
-
Args:
|
136 |
-
url (str): Full URL to the Wikipedia page.
|
137 |
-
|
138 |
-
Returns:
|
139 |
-
str: Sectioned and readable content from the page, including paragraphs, lists, and tables.
|
140 |
-
"""
|
141 |
-
headers = {"User-Agent": "Mozilla/5.0"}
|
142 |
-
resp = requests.get(url, headers=headers, timeout=10)
|
143 |
-
resp.raise_for_status()
|
144 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
145 |
-
content_div = soup.find('div', id='mw-content-text')
|
146 |
-
parts = []
|
147 |
-
for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']):
|
148 |
-
if elem.name in ['h2', 'h3']:
|
149 |
-
parts.append("\n\n" + elem.get_text(strip=True) + "\n")
|
150 |
-
elif elem.name in ['p', 'ul', 'ol']:
|
151 |
-
parts.append(elem.get_text(strip=True))
|
152 |
-
elif elem.name == 'table':
|
153 |
-
parts.append(parse_wikipedia_table(elem))
|
154 |
-
return "\n".join(parts)
|
155 |
-
|
156 |
-
|
157 |
-
@tool
|
158 |
-
def smart_paginate_around_query(full_text: str, query: str) -> list:
|
159 |
-
"""
|
160 |
-
Splits full text into focused windows surrounding the query keyword.
|
161 |
-
|
162 |
-
Args:
|
163 |
-
full_text (str): The large text content to paginate.
|
164 |
-
query (str): Keyword or phrase to center each window on.
|
165 |
-
|
166 |
-
Returns:
|
167 |
-
list: List of substrings centered around the query within the original text.
|
168 |
-
"""
|
169 |
-
before_chars = 1000
|
170 |
-
after_chars = 3000
|
171 |
-
q = query.lower()
|
172 |
-
text_lower = full_text.lower()
|
173 |
-
pages = []
|
174 |
-
start = 0
|
175 |
-
while True:
|
176 |
-
idx = text_lower.find(q, start)
|
177 |
-
if idx == -1:
|
178 |
-
break
|
179 |
-
s = max(0, idx - before_chars)
|
180 |
-
e = min(len(full_text), idx + len(q) + after_chars)
|
181 |
-
pages.append(full_text[s:e])
|
182 |
-
start = e
|
183 |
-
return pages
|
184 |
-
|
185 |
-
|
186 |
-
@tool
|
187 |
-
def reverse_sentence(text: str) -> str:
|
188 |
-
"""
|
189 |
-
Reverses the input text string.
|
190 |
-
|
191 |
-
Args:
|
192 |
-
text (str): A string to reverse.
|
193 |
-
|
194 |
-
Returns:
|
195 |
-
str: Reversed string.
|
196 |
-
"""
|
197 |
-
return text[::-1]
|
198 |
-
|
199 |
|
200 |
-
@tool
|
201 |
-
def run_python_code(file_name: str) -> str:
|
202 |
-
"""
|
203 |
-
Executes a Python script and returns the output.
|
204 |
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
return f"Error: {result.stderr.strip()}"
|
216 |
-
return result.stdout.strip()
|
217 |
-
except Exception as e:
|
218 |
-
return f"Execution failed: {e}"
|
219 |
|
220 |
-
# Agent Setup
|
221 |
-
tools = [
|
222 |
-
open_file_as_text,
|
223 |
-
web_search,
|
224 |
-
read_wikipedia_page,
|
225 |
-
smart_paginate_around_query,
|
226 |
-
reverse_sentence,
|
227 |
-
run_python_code
|
228 |
-
]
|
229 |
-
|
230 |
-
model = ClaudeServerModel(
|
231 |
-
api_key=os.getenv("CLAUDE_API_KEY"),
|
232 |
-
model_id="claude-3-opus-20240229"
|
233 |
-
)
|
234 |
-
|
235 |
-
agent = CodeAgent(
|
236 |
-
model=model,
|
237 |
-
tools=tools,
|
238 |
-
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
|
239 |
-
)
|
240 |
|
241 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
242 |
"""
|
243 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
244 |
and displays the results.
|
245 |
"""
|
246 |
-
# Determine HF Space Runtime URL and Repo URL
|
247 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
248 |
|
249 |
if profile:
|
@@ -257,18 +52,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
257 |
questions_url = f"{api_url}/questions"
|
258 |
submit_url = f"{api_url}/submit"
|
259 |
|
260 |
-
# Instantiate Agent ( modify this part to create your agent)
|
261 |
try:
|
262 |
-
agent =
|
263 |
-
model=model,
|
264 |
-
tools=tools,
|
265 |
-
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv",
|
266 |
-
"urllib"]
|
267 |
-
)
|
268 |
except Exception as e:
|
269 |
print(f"Error instantiating agent: {e}")
|
270 |
return f"Error initializing agent: {e}", None
|
271 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase (
|
272 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
273 |
print(agent_code)
|
274 |
|
@@ -300,37 +90,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
300 |
for item in questions_data:
|
301 |
task_id = item.get("task_id")
|
302 |
question_text = item.get("question")
|
303 |
-
file_name = item.get("file_name")
|
304 |
if not task_id or question_text is None:
|
305 |
print(f"Skipping item with missing task_id or question: {item}")
|
306 |
continue
|
|
|
|
|
|
|
307 |
try:
|
308 |
-
|
309 |
-
You are a precise answering agent optimized for exact-match benchmarks like GAIA.
|
310 |
-
|
311 |
-
Your job is to:
|
312 |
-
- Use tools (e.g., `web_search`, `read_wikipedia_page`, `smart_paginate_around_query`, `reverse_sentence`, `open_file_as_text`, etc.) only when needed.
|
313 |
-
- Never make assumptions. Do not guess.
|
314 |
-
- Use `read_wikipedia_page` to read full content if snippets from `web_search` are not enough.
|
315 |
-
- Use `smart_paginate_around_query` with 1-3 keyword terms — never full questions.
|
316 |
-
- Use `reverse_sentence` for any reverse operation, never do it manually.
|
317 |
-
- Use the provided `file_name` field for file tasks, not filenames inside the question.
|
318 |
-
- Output formats:
|
319 |
-
- Numbers: Digits only, no commas, $, or %.
|
320 |
-
- Strings: No articles, abbreviations, or spelled-out numbers unless required.
|
321 |
-
- Lists: Comma separated, single space after each comma.
|
322 |
-
- At the end, print only the final answer. No explanation, no reasoning.
|
323 |
-
|
324 |
-
Example:
|
325 |
-
If asked, “What is the capital of France?”
|
326 |
-
Respond:
|
327 |
-
print("Paris")
|
328 |
-
|
329 |
-
Question:
|
330 |
-
{question_text}
|
331 |
-
|
332 |
-
File to use (if needed): {file_name}"""
|
333 |
-
submitted_answer = agent.run(full_prompt)
|
334 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
335 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
336 |
except Exception as e:
|
|
|
1 |
+
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
+
import inspect
|
4 |
import gradio as gr
|
|
|
5 |
import requests
|
6 |
+
import pandas as pd
|
7 |
+
import time
|
8 |
+
from langchain_core.messages import HumanMessage
|
9 |
+
from agent import build_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
+
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
|
17 |
+
# --- Basic Agent Definition ---
|
18 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
class BasicAgent:
|
22 |
+
"""A langgraph agent."""
|
23 |
+
def __init__(self):
|
24 |
+
print("BasicAgent initialized.")
|
25 |
+
self.graph = build_graph()
|
26 |
|
27 |
+
def __call__(self, question: str) -> str:
|
28 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
+
# Wrap the question in a HumanMessage from langchain_core
|
30 |
+
messages = [HumanMessage(content=question)]
|
31 |
+
messages = self.graph.invoke({"messages": messages})
|
32 |
+
answer = messages['messages'][-1].content
|
33 |
+
return answer[14:]
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
37 |
"""
|
38 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
39 |
and displays the results.
|
40 |
"""
|
41 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
42 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
43 |
|
44 |
if profile:
|
|
|
52 |
questions_url = f"{api_url}/questions"
|
53 |
submit_url = f"{api_url}/submit"
|
54 |
|
55 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
56 |
try:
|
57 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
print(f"Error instantiating agent: {e}")
|
60 |
return f"Error initializing agent: {e}", None
|
61 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
62 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
63 |
print(agent_code)
|
64 |
|
|
|
90 |
for item in questions_data:
|
91 |
task_id = item.get("task_id")
|
92 |
question_text = item.get("question")
|
|
|
93 |
if not task_id or question_text is None:
|
94 |
print(f"Skipping item with missing task_id or question: {item}")
|
95 |
continue
|
96 |
+
|
97 |
+
# time.sleep(10)
|
98 |
+
|
99 |
try:
|
100 |
+
submitted_answer = agent(question_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
102 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
103 |
except Exception as e:
|
requirements.txt
CHANGED
@@ -1,11 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
duckduckgo-search==8.0.1
|
7 |
-
openpyxl==3.1.5
|
8 |
-
whisper==1.1.10
|
9 |
-
torch==2.1.0
|
10 |
-
ffmpeg-python==0.2.0
|
11 |
-
python-dotenv==1.1.0
|
|
|
1 |
+
langgraph
|
2 |
+
langchain-core
|
3 |
+
gradio
|
4 |
+
pandas
|
5 |
+
requests
|
|
|
|
|
|
|
|
|
|
|
|