Spaces:
Sleeping
Sleeping
File size: 17,724 Bytes
58486c5 43ac004 72e3c06 43ac004 5435b87 43ac004 c6add89 1013dbf c6add89 afd06a9 c6add89 26a30cd c6add89 1013dbf 43ac004 ba31095 43ac004 263d6ed 26a30cd ba31095 43ac004 1013dbf ca0ae1f 1013dbf 28f8836 1013dbf ca0ae1f 1013dbf ca0ae1f 1013dbf ca0ae1f 28f8836 1013dbf 28f8836 1013dbf ca0ae1f 28f8836 1013dbf 28f8836 1013dbf 28f8836 ca0ae1f 1013dbf 28f8836 1013dbf 28f8836 ca0ae1f 1013dbf 28f8836 ca0ae1f 28f8836 1013dbf 28f8836 1013dbf ca0ae1f 28f8836 1013dbf 28f8836 1013dbf 28f8836 ca0ae1f 28f8836 1013dbf 28f8836 ca0ae1f 28f8836 1013dbf 28f8836 ca0ae1f 28f8836 1013dbf afd06a9 1013dbf 72e3c06 1013dbf afd06a9 43ac004 1013dbf 28f8836 1013dbf 28f8836 1013dbf 28f8836 1013dbf afd06a9 1013dbf 28f8836 1013dbf 28f8836 1013dbf 28f8836 72e3c06 ba31095 74f5196 c6add89 ba31095 cb8f33a ba31095 cb8f33a 43ac004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import gradio as gr
import os
from functools import partial
api_token = os.getenv("HF_TOKEN")
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2", "deepseek-ai/DeepSeek-R1"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split PDF document
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created successfully! ✅"
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
timeout=120,
max_retries=3
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token=api_token,
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
timeout=120,
max_retries=3
)
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot is ready! 🚀"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history, language):
formatted_chat_history = format_chat_history(message, history)
if language == "Português":
prompt = f"Responda em português: {message}"
else:
prompt = f"Answer in English: {message}"
try:
response = qa_chain.invoke({"question": prompt, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
except Exception as e:
if language == "Português":
response_answer = f"Erro: Não foi possível obter resposta do modelo devido a problemas no servidor. Tente novamente mais tarde. ({str(e)})"
else:
response_answer = f"Error: Could not get a response from the model due to server issues. Please try again later. ({str(e)})"
try:
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2 = response_sources[1].page_content.strip()
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3 = response_sources[2].page_content.strip()
response_source3_page = response_sources[2].metadata["page"] + 1
except:
response_source1 = response_source2 = response_source3 = "N/A"
response_source1_page = response_source2_page = response_source3_page = 0
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# Main demo with enhanced UI
def demo():
# Custom CSS
custom_css = """
/* Global styles */
body {
font-family: 'Inter', sans-serif;
color: #333333; /* Dark Gray Text */
background-color: #f7f7f7; /* Light Gray Background */
}
.container {
max-width: 1200px;
margin: 0 auto;
}
/* Header styles */
.header {
text-align: center;
padding: 20px 0;
margin-bottom: 20px;
background: linear-gradient(90deg, #3171c7, #24599b); /* Primary & Secondary Blue */
color: white;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.header h1 {
font-size: 2.5rem;
margin: 0;
padding: 0;
}
.header p {
font-size: 1.1rem;
margin: 10px 0 0;
opacity: 0.9;
}
/* Card styles */
.card {
background-color: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
margin-bottom: 20px;
}
/* Section titles */
.section-title {
font-size: 1.25rem;
font-weight: 600;
margin-bottom: 15px;
color: #3171c7; /* Primary Blue */
display: flex;
align-items: center;
}
.section-title svg {
margin-right: 8px;
}
/* Buttons */
.primary-button {
background: linear-gradient(90deg, #3171c7, #24599b); /* Primary & Secondary Blue */
color: white !important;
border: none !important;
padding: 10px 20px !important;
border-radius: 8px !important;
font-weight: 500 !important;
cursor: pointer;
transition: all 0.2s ease;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
}
.primary-button:hover {
background: linear-gradient(90deg, #24599b, #1d4a83); /* Darker Blue on Hover */
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
transform: translateY(-1px);
}
/* Status indicators */
.status {
padding: 8px 12px !important;
border-radius: 6px !important;
font-size: 0.9rem !important;
font-weight: 500 !important;
}
.status-success {
background-color: #d1fae5 !important;
color: #065f46 !important; /* Teal */
}
.status-waiting {
background-color: #fef3c7 !important;
color: #92400e !important;
}
.status-error {
background-color: #fee2e2 !important;
color: #d9534f !important; /* Red */
}
/* Chat container */
.chat-container {
border-radius: 10px !important;
border: 1px solid #e0e0e0 !important; /* Medium Gray Border */
overflow: hidden !important;
}
/* Document upload area */
.upload-area {
border: 2px dashed #d1d5db !important;
border-radius: 8px !important;
padding: 20px !important;
text-align: center !important;
background-color: #f9fafb !important;
transition: all 0.2s ease;
}
.upload-area:hover {
border-color: #3171c7 !important; /* Primary Blue on Hover */
background-color: #eff6ff !important;
}
/* Parameter sliders */
.parameter-slider {
margin-bottom: 15px !important;
}
/* Reference boxes */
.reference-box {
background-color: #f3f4f6 !important;
border-left: 4px solid #3171c7 !important; /* Primary Blue */
padding: 10px 15px !important;
margin-bottom: 10px !important;
border-radius: 4px !important;
}
.reference-box-title {
font-weight: 600 !important;
color: #3171c7 !important; /* Primary Blue */
margin-bottom: 5px !important;
display: flex !important;
justify-content: space-between !important;
}
.page-number {
background-color: #dbeafe !important;
color: #3171c7 !important; /* Primary Blue */
padding: 2px 8px !important;
border-radius: 12px !important;
font-size: 0.8rem !important;
}
/* Responsive adjustments */
@media (max-width: 768px) {
.header h1 {
font-size: 1.8rem;
}
}
"""
# HTML Components
header_html = """
<div class="header">
<h1>📚 RAG PDF Chatbot</h1>
<p>Query your documents with AI-powered search and generation</p>
</div>
"""
upload_html = """
<div class="section-title">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"></path>
<polyline points="17 8 12 3 7 8"></polyline>
<line x1="12" y1="3" x2="12" y2="15"></line>
</svg>
Upload your PDF documents
</div>
<p>Select one or more PDF files to analyze and chat with.</p>
"""
model_html = """
<div class="section-title">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<path d="M12 2L2 7l10 5 10-5-10-5z"></path>
<path d="M2 17l10 5 10-5"></path>
<path d="M2 12l10 5 10-5"></path>
</svg>
Select AI Model
</div>
<p>Choose the language model that will process your questions.</p>
"""
chat_html = """
<div class="section-title">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path>
</svg>
Chat with your Documents
</div>
<p>Ask questions about your uploaded documents to get AI-powered answers.</p>
"""
reference_html = """
<div class="section-title">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<path d="M2 3h6a4 4 0 0 1 4 4v14a3 3 0 0 0-3-3H2z"></path>
<path d="M22 3h-6a4 4 0 0 0-4 4v14a3 3 0 0 1 3-3h7z"></path>
</svg>
Document References
</div>
<p>These are the relevant sections from your documents that the AI used to generate its response.</p>
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="blue", neutral_hue="slate"), css=custom_css) as demo:
# State variables
vector_db = gr.State()
qa_chain = gr.State()
# Header
gr.HTML(header_html)
with gr.Row():
# Left column - Setup
with gr.Column(scale=1):
with gr.Group(elem_classes="card"):
gr.HTML(upload_html)
document = gr.Files(height=200, file_count="multiple", file_types=["pdf"], interactive=True)
db_btn = gr.Button("Create Vector Database", elem_classes="primary-button")
db_progress = gr.Textbox(value="Not initialized", show_label=False, elem_classes="status status-waiting")
with gr.Group(elem_classes="card"):
gr.HTML(model_html)
llm_btn = gr.Radio(list_llm_simple, label="", value=list_llm_simple[0], type="index")
with gr.Accordion("Advanced Parameters", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", interactive=True, elem_classes="parameter-slider")
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max Tokens", interactive=True, elem_classes="parameter-slider")
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-K", interactive=True, elem_classes="parameter-slider")
qachain_btn = gr.Button("Initialize Chatbot", elem_classes="primary-button")
llm_progress = gr.Textbox(value="Not initialized", show_label=False, elem_classes="status status-waiting")
with gr.Group(elem_classes="card"):
gr.Markdown("### Usage Instructions")
gr.Markdown("""
1. Upload one or more PDF documents
2. Click "Create Vector Database"
3. Select your preferred AI model
4. Click "Initialize Chatbot"
5. Start asking questions about your documents
**Note:** The system will analyze your documents and use AI to answer questions based on their content.
""")
# Right column - Chat
with gr.Column(scale=1.5):
with gr.Group(elem_classes="card"):
gr.HTML(chat_html)
language_selector = gr.Radio(["English", "Português"], label="Response Language", value="English")
chatbot = gr.Chatbot(height=400, elem_classes="chat-container")
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(placeholder="Ask a question about your documents...", show_label=False)
with gr.Column(scale=1):
submit_btn = gr.Button("Send", elem_classes="primary-button")
with gr.Row():
clear_btn = gr.Button("Clear Chat", scale=1)
with gr.Group(elem_classes="card"):
gr.HTML(reference_html)
with gr.Accordion("Document References", open=True):
# Reference 1
gr.Markdown("**Reference 1**", elem_classes="reference-box-title")
with gr.Row():
doc_source1 = gr.Textbox(show_label=False, lines=2, elem_classes="reference-box")
source1_page = gr.Number(label="Page", show_label=True, elem_classes="page-number")
# Reference 2
gr.Markdown("**Reference 2**", elem_classes="reference-box-title")
with gr.Row():
doc_source2 = gr.Textbox(show_label=False, lines=2, elem_classes="reference-box")
source2_page = gr.Number(label="Page", show_label=True, elem_classes="page-number")
# Reference 3
gr.Markdown("**Reference 3**", elem_classes="reference-box-title")
with gr.Row():
doc_source3 = gr.Textbox(show_label=False, lines=2, elem_classes="reference-box")
source3_page = gr.Number(label="Page", show_label=True, elem_classes="page-number")
# Preprocessing events
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False
)
# Chatbot events
msg.submit(conversation, inputs=[qa_chain, msg, chatbot, language_selector], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, language_selector], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |