Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -45,6 +45,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
45 |
temperature=temperature,
|
46 |
max_new_tokens=max_tokens,
|
47 |
top_k=top_k,
|
|
|
|
|
48 |
)
|
49 |
else:
|
50 |
llm = HuggingFaceEndpoint(
|
@@ -53,6 +55,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
53 |
temperature=temperature,
|
54 |
max_new_tokens=max_tokens,
|
55 |
top_k=top_k,
|
|
|
|
|
56 |
)
|
57 |
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
|
58 |
retriever = vector_db.as_retriever()
|
@@ -88,19 +92,29 @@ def conversation(qa_chain, message, history, language):
|
|
88 |
else:
|
89 |
prompt = f"Answer in English: {message}"
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
response_sources = response["source_documents"]
|
98 |
-
response_source1 = response_sources[0].page_content.strip()
|
99 |
-
response_source2 = response_sources[1].page_content.strip()
|
100 |
-
response_source3 = response_sources[2].page_content.strip()
|
101 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
102 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
103 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
104 |
new_history = history + [(message, response_answer)]
|
105 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
106 |
|
|
|
45 |
temperature=temperature,
|
46 |
max_new_tokens=max_tokens,
|
47 |
top_k=top_k,
|
48 |
+
timeout=120, # Aumentado para 120 segundos
|
49 |
+
max_retries=3 # Tenta até 3 vezes
|
50 |
)
|
51 |
else:
|
52 |
llm = HuggingFaceEndpoint(
|
|
|
55 |
temperature=temperature,
|
56 |
max_new_tokens=max_tokens,
|
57 |
top_k=top_k,
|
58 |
+
timeout=120,
|
59 |
+
max_retries=3
|
60 |
)
|
61 |
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
|
62 |
retriever = vector_db.as_retriever()
|
|
|
92 |
else:
|
93 |
prompt = f"Answer in English: {message}"
|
94 |
|
95 |
+
try:
|
96 |
+
response = qa_chain.invoke({"question": prompt, "chat_history": formatted_chat_history})
|
97 |
+
response_answer = response["answer"]
|
98 |
+
if response_answer.find("Helpful Answer:") != -1:
|
99 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
100 |
+
except Exception as e:
|
101 |
+
if language == "Português":
|
102 |
+
response_answer = f"Erro: Não foi possível obter resposta do modelo devido a problemas no servidor. Tente novamente mais tarde. ({str(e)})"
|
103 |
+
else:
|
104 |
+
response_answer = f"Error: Could not get a response from the model due to server issues. Please try again later. ({str(e)})"
|
105 |
+
|
106 |
+
try:
|
107 |
+
response_sources = response["source_documents"]
|
108 |
+
response_source1 = response_sources[0].page_content.strip()
|
109 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
110 |
+
response_source2 = response_sources[1].page_content.strip()
|
111 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
112 |
+
response_source3 = response_sources[2].page_content.strip()
|
113 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
114 |
+
except:
|
115 |
+
response_source1 = response_source2 = response_source3 = "N/A"
|
116 |
+
response_source1_page = response_source2_page = response_source3_page = 0
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
new_history = history + [(message, response_answer)]
|
119 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
120 |
|