Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import secrets
|
4 |
from functools import partial
|
5 |
|
6 |
api_token = os.getenv("HF_TOKEN")
|
@@ -16,15 +15,6 @@ from langchain_community.llms import HuggingFaceEndpoint
|
|
16 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
17 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
18 |
|
19 |
-
# Simulated user database (replace with a real database in production)
|
20 |
-
USER_DB = {
|
21 |
-
"admin": {"password": "securepass123", "email": "[email protected]"},
|
22 |
-
"user1": {"password": "userpass456", "email": "[email protected]"}
|
23 |
-
}
|
24 |
-
|
25 |
-
# Session storage (in-memory for simplicity)
|
26 |
-
SESSIONS = {}
|
27 |
-
|
28 |
# Load and split PDF document
|
29 |
def load_doc(list_file_path):
|
30 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
@@ -46,7 +36,7 @@ def initialize_database(list_file_obj, progress=gr.Progress()):
|
|
46 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
47 |
doc_splits = load_doc(list_file_path)
|
48 |
vector_db = create_db(doc_splits)
|
49 |
-
return vector_db, "Database created!"
|
50 |
|
51 |
# Initialize langchain LLM chain
|
52 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
@@ -86,7 +76,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
86 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
87 |
llm_name = list_llm[llm_option]
|
88 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
89 |
-
return qa_chain, "QA chain initialized. Chatbot is ready!"
|
90 |
|
91 |
def format_chat_history(message, chat_history):
|
92 |
formatted_chat_history = []
|
@@ -128,114 +118,296 @@ def conversation(qa_chain, message, history, language):
|
|
128 |
new_history = history + [(message, response_answer)]
|
129 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
130 |
|
131 |
-
#
|
132 |
-
def
|
133 |
-
#
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
def demo():
|
150 |
-
with gr.Blocks(
|
151 |
-
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate"),
|
152 |
-
css="""
|
153 |
-
.login-box { max-width: 400px; margin: 50px auto; padding: 20px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.1); }
|
154 |
-
.title { text-align: center; font-size: 2em; margin-bottom: 20px; }
|
155 |
-
.button { background-color: #007bff; color: white; border-radius: 5px; }
|
156 |
-
.button:hover { background-color: #0056b3; }
|
157 |
-
"""
|
158 |
-
) as demo:
|
159 |
# State variables
|
160 |
vector_db = gr.State()
|
161 |
qa_chain = gr.State()
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
with gr.
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
gr.
|
188 |
-
|
189 |
-
with gr.
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
with gr.Accordion("
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
inputs=[logged_in],
|
219 |
-
outputs=[login_col, chatbot_col],
|
220 |
-
queue=False
|
221 |
-
)
|
222 |
-
|
223 |
-
# Logout event
|
224 |
-
logout_btn.click(
|
225 |
-
fn=logout,
|
226 |
-
inputs=[session_token],
|
227 |
-
outputs=[logged_in, session_token, login_message]
|
228 |
-
).then(
|
229 |
-
fn=lambda logged: (gr.update(visible=not logged), gr.update(visible=logged)),
|
230 |
-
inputs=[logged_in],
|
231 |
-
outputs=[login_col, chatbot_col],
|
232 |
-
queue=False
|
233 |
-
).then(
|
234 |
-
fn=lambda: gr.update(value="Please log in to access the chatbot."),
|
235 |
-
inputs=None,
|
236 |
-
outputs=[login_message],
|
237 |
-
queue=False
|
238 |
-
)
|
239 |
|
240 |
# Preprocessing events
|
241 |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from functools import partial
|
4 |
|
5 |
api_token = os.getenv("HF_TOKEN")
|
|
|
15 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
16 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Load and split PDF document
|
19 |
def load_doc(list_file_path):
|
20 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
|
|
36 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
37 |
doc_splits = load_doc(list_file_path)
|
38 |
vector_db = create_db(doc_splits)
|
39 |
+
return vector_db, "Database created successfully! ✅"
|
40 |
|
41 |
# Initialize langchain LLM chain
|
42 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
76 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
77 |
llm_name = list_llm[llm_option]
|
78 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
79 |
+
return qa_chain, "QA chain initialized. Chatbot is ready! 🚀"
|
80 |
|
81 |
def format_chat_history(message, chat_history):
|
82 |
formatted_chat_history = []
|
|
|
118 |
new_history = history + [(message, response_answer)]
|
119 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
120 |
|
121 |
+
# Main demo with enhanced UI
|
122 |
+
def demo():
|
123 |
+
# Custom CSS
|
124 |
+
custom_css = """
|
125 |
+
/* Global styles */
|
126 |
+
body {
|
127 |
+
font-family: 'Inter', sans-serif;
|
128 |
+
color: #333;
|
129 |
+
background-color: #f9fafb;
|
130 |
+
}
|
131 |
+
|
132 |
+
/* Header styles */
|
133 |
+
.header {
|
134 |
+
text-align: center;
|
135 |
+
padding: 20px 0;
|
136 |
+
margin-bottom: 20px;
|
137 |
+
background: linear-gradient(90deg, #3b82f6, #2563eb);
|
138 |
+
color: white;
|
139 |
+
border-radius: 10px;
|
140 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
141 |
+
}
|
142 |
+
|
143 |
+
.header h1 {
|
144 |
+
font-size: 2.5rem;
|
145 |
+
margin: 0;
|
146 |
+
padding: 0;
|
147 |
+
}
|
148 |
+
|
149 |
+
.header p {
|
150 |
+
font-size: 1.1rem;
|
151 |
+
margin: 10px 0 0;
|
152 |
+
opacity: 0.9;
|
153 |
+
}
|
154 |
+
|
155 |
+
/* Card styles */
|
156 |
+
.card {
|
157 |
+
background-color: white;
|
158 |
+
border-radius: 10px;
|
159 |
+
padding: 20px;
|
160 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
161 |
+
margin-bottom: 20px;
|
162 |
+
}
|
163 |
+
|
164 |
+
/* Section titles */
|
165 |
+
.section-title {
|
166 |
+
font-size: 1.25rem;
|
167 |
+
font-weight: 600;
|
168 |
+
margin-bottom: 15px;
|
169 |
+
color: #1e40af;
|
170 |
+
display: flex;
|
171 |
+
align-items: center;
|
172 |
+
}
|
173 |
+
|
174 |
+
.section-title svg {
|
175 |
+
margin-right: 8px;
|
176 |
+
}
|
177 |
+
|
178 |
+
/* Buttons */
|
179 |
+
.primary-button {
|
180 |
+
background: linear-gradient(90deg, #3b82f6, #2563eb);
|
181 |
+
color: white;
|
182 |
+
border: none;
|
183 |
+
padding: 10px 20px;
|
184 |
+
border-radius: 8px;
|
185 |
+
font-weight: 500;
|
186 |
+
cursor: pointer;
|
187 |
+
transition: all 0.2s ease;
|
188 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
189 |
+
}
|
190 |
+
|
191 |
+
.primary-button:hover {
|
192 |
+
background: linear-gradient(90deg, #2563eb, #1d4ed8);
|
193 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
|
194 |
+
transform: translateY(-1px);
|
195 |
+
}
|
196 |
+
|
197 |
+
/* Status indicators */
|
198 |
+
.status {
|
199 |
+
padding: 8px 12px;
|
200 |
+
border-radius: 6px;
|
201 |
+
font-size: 0.9rem;
|
202 |
+
font-weight: 500;
|
203 |
+
}
|
204 |
+
|
205 |
+
.status-success {
|
206 |
+
background-color: #d1fae5;
|
207 |
+
color: #065f46;
|
208 |
+
}
|
209 |
+
|
210 |
+
.status-waiting {
|
211 |
+
background-color: #fef3c7;
|
212 |
+
color: #92400e;
|
213 |
+
}
|
214 |
+
|
215 |
+
.status-error {
|
216 |
+
background-color: #fee2e2;
|
217 |
+
color: #b91c1c;
|
218 |
+
}
|
219 |
+
|
220 |
+
/* Chat container */
|
221 |
+
.chat-container {
|
222 |
+
border-radius: 10px;
|
223 |
+
border: 1px solid #e5e7eb;
|
224 |
+
overflow: hidden;
|
225 |
+
}
|
226 |
+
|
227 |
+
/* Document upload area */
|
228 |
+
.upload-area {
|
229 |
+
border: 2px dashed #d1d5db;
|
230 |
+
border-radius: 8px;
|
231 |
+
padding: 20px;
|
232 |
+
text-align: center;
|
233 |
+
background-color: #f9fafb;
|
234 |
+
transition: all 0.2s ease;
|
235 |
+
}
|
236 |
+
|
237 |
+
.upload-area:hover {
|
238 |
+
border-color: #3b82f6;
|
239 |
+
background-color: #eff6ff;
|
240 |
+
}
|
241 |
+
|
242 |
+
/* Parameter sliders */
|
243 |
+
.parameter-slider {
|
244 |
+
margin-bottom: 15px;
|
245 |
+
}
|
246 |
+
|
247 |
+
/* Reference boxes */
|
248 |
+
.reference-box {
|
249 |
+
background-color: #f3f4f6;
|
250 |
+
border-left: 4px solid #3b82f6;
|
251 |
+
padding: 10px 15px;
|
252 |
+
margin-bottom: 10px;
|
253 |
+
border-radius: 4px;
|
254 |
+
}
|
255 |
+
|
256 |
+
.reference-box-title {
|
257 |
+
font-weight: 600;
|
258 |
+
color: #1e40af;
|
259 |
+
margin-bottom: 5px;
|
260 |
+
display: flex;
|
261 |
+
justify-content: space-between;
|
262 |
+
}
|
263 |
+
|
264 |
+
.page-number {
|
265 |
+
background-color: #dbeafe;
|
266 |
+
color: #1e40af;
|
267 |
+
padding: 2px 8px;
|
268 |
+
border-radius: 12px;
|
269 |
+
font-size: 0.8rem;
|
270 |
+
}
|
271 |
+
|
272 |
+
/* Responsive adjustments */
|
273 |
+
@media (max-width: 768px) {
|
274 |
+
.header h1 {
|
275 |
+
font-size: 1.8rem;
|
276 |
+
}
|
277 |
+
}
|
278 |
+
"""
|
279 |
|
280 |
+
# HTML Components
|
281 |
+
header_html = """
|
282 |
+
<div class="header">
|
283 |
+
<h1>📚 RAG PDF Chatbot</h1>
|
284 |
+
<p>Query your documents with AI-powered search and generation</p>
|
285 |
+
</div>
|
286 |
+
"""
|
287 |
+
|
288 |
+
upload_html = """
|
289 |
+
<div class="section-title">
|
290 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
291 |
+
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"></path>
|
292 |
+
<polyline points="17 8 12 3 7 8"></polyline>
|
293 |
+
<line x1="12" y1="3" x2="12" y2="15"></line>
|
294 |
+
</svg>
|
295 |
+
Upload your PDF documents
|
296 |
+
</div>
|
297 |
+
<p>Select one or more PDF files to analyze and chat with.</p>
|
298 |
+
"""
|
299 |
+
|
300 |
+
model_html = """
|
301 |
+
<div class="section-title">
|
302 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
303 |
+
<path d="M12 2L2 7l10 5 10-5-10-5z"></path>
|
304 |
+
<path d="M2 17l10 5 10-5"></path>
|
305 |
+
<path d="M2 12l10 5 10-5"></path>
|
306 |
+
</svg>
|
307 |
+
Select AI Model
|
308 |
+
</div>
|
309 |
+
<p>Choose the language model that will process your questions.</p>
|
310 |
+
"""
|
311 |
+
|
312 |
+
chat_html = """
|
313 |
+
<div class="section-title">
|
314 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
315 |
+
<path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path>
|
316 |
+
</svg>
|
317 |
+
Chat with your Documents
|
318 |
+
</div>
|
319 |
+
<p>Ask questions about your uploaded documents to get AI-powered answers.</p>
|
320 |
+
"""
|
321 |
+
|
322 |
+
reference_html = """
|
323 |
+
<div class="section-title">
|
324 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
325 |
+
<path d="M2 3h6a4 4 0 0 1 4 4v14a3 3 0 0 0-3-3H2z"></path>
|
326 |
+
<path d="M22 3h-6a4 4 0 0 0-4 4v14a3 3 0 0 1 3-3h7z"></path>
|
327 |
+
</svg>
|
328 |
+
Document References
|
329 |
+
</div>
|
330 |
+
<p>These are the relevant sections from your documents that the AI used to generate its response.</p>
|
331 |
+
"""
|
332 |
|
333 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="blue", neutral_hue="slate"), css=custom_css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
# State variables
|
335 |
vector_db = gr.State()
|
336 |
qa_chain = gr.State()
|
337 |
+
|
338 |
+
# Header
|
339 |
+
gr.HTML(header_html)
|
340 |
+
|
341 |
+
with gr.Row():
|
342 |
+
# Left column - Setup
|
343 |
+
with gr.Column(scale=1):
|
344 |
+
with gr.Box(elem_classes="card"):
|
345 |
+
gr.HTML(upload_html)
|
346 |
+
document = gr.Files(height=200, file_count="multiple", file_types=["pdf"], interactive=True)
|
347 |
+
db_btn = gr.Button("Create Vector Database", elem_classes="primary-button")
|
348 |
+
db_progress = gr.Textbox(value="Not initialized", show_label=False, elem_classes="status status-waiting")
|
349 |
+
|
350 |
+
with gr.Box(elem_classes="card"):
|
351 |
+
gr.HTML(model_html)
|
352 |
+
llm_btn = gr.Radio(list_llm_simple, label="", value=list_llm_simple[0], type="index")
|
353 |
+
|
354 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
355 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", interactive=True, elem_classes="parameter-slider")
|
356 |
+
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max Tokens", interactive=True, elem_classes="parameter-slider")
|
357 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-K", interactive=True, elem_classes="parameter-slider")
|
358 |
+
|
359 |
+
qachain_btn = gr.Button("Initialize Chatbot", elem_classes="primary-button")
|
360 |
+
llm_progress = gr.Textbox(value="Not initialized", show_label=False, elem_classes="status status-waiting")
|
361 |
+
|
362 |
+
with gr.Box(elem_classes="card"):
|
363 |
+
gr.Markdown("### Usage Instructions")
|
364 |
+
gr.Markdown("""
|
365 |
+
1. Upload one or more PDF documents
|
366 |
+
2. Click "Create Vector Database"
|
367 |
+
3. Select your preferred AI model
|
368 |
+
4. Click "Initialize Chatbot"
|
369 |
+
5. Start asking questions about your documents
|
370 |
+
|
371 |
+
**Note:** The system will analyze your documents and use AI to answer questions based on their content.
|
372 |
+
""")
|
373 |
|
374 |
+
# Right column - Chat
|
375 |
+
with gr.Column(scale=1.5):
|
376 |
+
with gr.Box(elem_classes="card"):
|
377 |
+
gr.HTML(chat_html)
|
378 |
+
language_selector = gr.Radio(["English", "Português"], label="Response Language", value="English")
|
379 |
+
|
380 |
+
chatbot = gr.Chatbot(height=400, elem_classes="chat-container")
|
381 |
+
|
382 |
+
with gr.Row():
|
383 |
+
with gr.Column(scale=4):
|
384 |
+
msg = gr.Textbox(placeholder="Ask a question about your documents...", show_label=False)
|
385 |
+
with gr.Column(scale=1):
|
386 |
+
submit_btn = gr.Button("Send", elem_classes="primary-button")
|
387 |
+
|
388 |
+
with gr.Row():
|
389 |
+
clear_btn = gr.Button("Clear Chat", scale=1)
|
390 |
+
|
391 |
+
with gr.Box(elem_classes="card"):
|
392 |
+
gr.HTML(reference_html)
|
393 |
+
with gr.Accordion("Document References", open=True):
|
394 |
+
with gr.Box(elem_classes="reference-box"):
|
395 |
+
with gr.Row():
|
396 |
+
gr.Markdown("**Reference 1**", elem_classes="reference-box-title")
|
397 |
+
source1_page = gr.Number(label="Page", show_label=False, elem_classes="page-number")
|
398 |
+
doc_source1 = gr.Textbox(show_label=False, lines=2)
|
399 |
+
|
400 |
+
with gr.Box(elem_classes="reference-box"):
|
401 |
+
with gr.Row():
|
402 |
+
gr.Markdown("**Reference 2**", elem_classes="reference-box-title")
|
403 |
+
source2_page = gr.Number(label="Page", show_label=False, elem_classes="page-number")
|
404 |
+
doc_source2 = gr.Textbox(show_label=False, lines=2)
|
405 |
+
|
406 |
+
with gr.Box(elem_classes="reference-box"):
|
407 |
+
with gr.Row():
|
408 |
+
gr.Markdown("**Reference 3**", elem_classes="reference-box-title")
|
409 |
+
source3_page = gr.Number(label="Page", show_label=False, elem_classes="page-number")
|
410 |
+
doc_source3 = gr.Textbox(show_label=False, lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
# Preprocessing events
|
413 |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
|