DHEIVER commited on
Commit
ba31095
·
verified ·
1 Parent(s): a5c9a00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -164
app.py CHANGED
@@ -2,99 +2,18 @@ import gradio as gr
2
  import os
3
  api_token = os.getenv("HF_TOKEN")
4
 
5
-
6
  from langchain_community.vectorstores import FAISS
7
  from langchain_community.document_loaders import PyPDFLoader
8
  from langchain.text_splitter import RecursiveCharacterTextSplitter
9
- from langchain_community.vectorstores import Chroma
10
  from langchain.chains import ConversationalRetrievalChain
11
  from langchain_community.embeddings import HuggingFaceEmbeddings
12
- from langchain_community.llms import HuggingFacePipeline
13
- from langchain.chains import ConversationChain
14
  from langchain.memory import ConversationBufferMemory
15
  from langchain_community.llms import HuggingFaceEndpoint
16
- import torch
17
 
18
  list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
19
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
20
 
21
- # Load and split PDF document
22
- def load_doc(list_file_path):
23
- # Processing for one document only
24
- # loader = PyPDFLoader(file_path)
25
- # pages = loader.load()
26
- loaders = [PyPDFLoader(x) for x in list_file_path]
27
- pages = []
28
- for loader in loaders:
29
- pages.extend(loader.load())
30
- text_splitter = RecursiveCharacterTextSplitter(
31
- chunk_size = 1024,
32
- chunk_overlap = 64
33
- )
34
- doc_splits = text_splitter.split_documents(pages)
35
- return doc_splits
36
-
37
- # Create vector database
38
- def create_db(splits):
39
- embeddings = HuggingFaceEmbeddings()
40
- vectordb = FAISS.from_documents(splits, embeddings)
41
- return vectordb
42
-
43
-
44
- # Initialize langchain LLM chain
45
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
46
- if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
47
- llm = HuggingFaceEndpoint(
48
- repo_id=llm_model,
49
- huggingfacehub_api_token = api_token,
50
- temperature = temperature,
51
- max_new_tokens = max_tokens,
52
- top_k = top_k,
53
- )
54
- else:
55
- llm = HuggingFaceEndpoint(
56
- huggingfacehub_api_token = api_token,
57
- repo_id=llm_model,
58
- temperature = temperature,
59
- max_new_tokens = max_tokens,
60
- top_k = top_k,
61
- )
62
-
63
- memory = ConversationBufferMemory(
64
- memory_key="chat_history",
65
- output_key='answer',
66
- return_messages=True
67
- )
68
-
69
- retriever=vector_db.as_retriever()
70
- qa_chain = ConversationalRetrievalChain.from_llm(
71
- llm,
72
- retriever=retriever,
73
- chain_type="stuff",
74
- memory=memory,
75
- return_source_documents=True,
76
- verbose=False,
77
- )
78
- return qa_chain
79
-
80
- # Initialize database
81
- def initialize_database(list_file_obj, progress=gr.Progress()):
82
- # Create a list of documents (when valid)
83
- list_file_path = [x.name for x in list_file_obj if x is not None]
84
- # Load document and create splits
85
- doc_splits = load_doc(list_file_path)
86
- # Create or load vector database
87
- vector_db = create_db(doc_splits)
88
- return vector_db, "Database created!"
89
-
90
- # Initialize LLM
91
- def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
92
- # print("llm_option",llm_option)
93
- llm_name = list_llm[llm_option]
94
- print("llm_name: ",llm_name)
95
- qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
- return qa_chain, "QA chain initialized. Chatbot is ready!"
97
-
98
 
99
  def format_chat_history(message, chat_history):
100
  formatted_chat_history = []
@@ -102,115 +21,85 @@ def format_chat_history(message, chat_history):
102
  formatted_chat_history.append(f"User: {user_message}")
103
  formatted_chat_history.append(f"Assistant: {bot_message}")
104
  return formatted_chat_history
105
-
106
 
107
- def conversation(qa_chain, message, history):
 
108
  formatted_chat_history = format_chat_history(message, history)
109
  # Generate response using QA chain
110
  response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
111
  response_answer = response["answer"]
112
  if response_answer.find("Helpful Answer:") != -1:
113
  response_answer = response_answer.split("Helpful Answer:")[-1]
 
 
 
 
 
 
 
 
 
114
  response_sources = response["source_documents"]
115
  response_source1 = response_sources[0].page_content.strip()
116
  response_source2 = response_sources[1].page_content.strip()
117
  response_source3 = response_sources[2].page_content.strip()
118
- # Langchain sources are zero-based
119
  response_source1_page = response_sources[0].metadata["page"] + 1
120
  response_source2_page = response_sources[1].metadata["page"] + 1
121
  response_source3_page = response_sources[2].metadata["page"] + 1
122
- # Append user message and response to chat history
123
  new_history = history + [(message, response_answer)]
124
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
125
-
126
-
127
- def upload_file(file_obj):
128
- list_file_path = []
129
- for idx, file in enumerate(file_obj):
130
- file_path = file_obj.name
131
- list_file_path.append(file_path)
132
- return list_file_path
133
-
134
 
135
  def demo():
136
- # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
137
- with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
138
  vector_db = gr.State()
139
  qa_chain = gr.State()
140
- gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
- gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
142
- <b>Please do not upload confidential documents.</b>
143
- """)
144
  with gr.Row():
145
- with gr.Column(scale = 86):
146
  gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
147
- with gr.Row():
148
- document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
- with gr.Row():
150
- db_btn = gr.Button("Create vector database")
151
- with gr.Row():
152
- db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
- gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
154
- with gr.Row():
155
- llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
156
- with gr.Row():
157
- with gr.Accordion("LLM input parameters", open=False):
158
- with gr.Row():
159
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
160
- with gr.Row():
161
- slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
162
- with gr.Row():
163
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
164
- with gr.Row():
165
- qachain_btn = gr.Button("Initialize Question Answering Chatbot")
166
- with gr.Row():
167
- llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
-
169
- with gr.Column(scale = 200):
170
  gr.Markdown("<b>Step 2 - Chat with your Document</b>")
 
 
171
  chatbot = gr.Chatbot(height=505)
172
- with gr.Accordion("Relevent context from the source document", open=False):
173
- with gr.Row():
174
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
175
- source1_page = gr.Number(label="Page", scale=1)
176
- with gr.Row():
177
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
178
- source2_page = gr.Number(label="Page", scale=1)
179
- with gr.Row():
180
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
181
- source3_page = gr.Number(label="Page", scale=1)
182
- with gr.Row():
183
- msg = gr.Textbox(placeholder="Ask a question", container=True)
184
- with gr.Row():
185
- submit_btn = gr.Button("Submit")
186
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
-
188
  # Preprocessing events
189
- db_btn.click(initialize_database, \
190
- inputs=[document], \
191
- outputs=[vector_db, db_progress])
192
- qachain_btn.click(initialize_LLM, \
193
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
194
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
195
- inputs=None, \
196
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
197
- queue=False)
198
 
199
- # Chatbot events
200
- msg.submit(conversation, \
201
- inputs=[qa_chain, msg, chatbot], \
202
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
203
- queue=False)
204
- submit_btn.click(conversation, \
205
- inputs=[qa_chain, msg, chatbot], \
206
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
207
- queue=False)
208
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
209
- inputs=None, \
210
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
211
- queue=False)
212
- demo.queue().launch(debug=True)
213
 
 
214
 
215
  if __name__ == "__main__":
216
  demo()
 
2
  import os
3
  api_token = os.getenv("HF_TOKEN")
4
 
 
5
  from langchain_community.vectorstores import FAISS
6
  from langchain_community.document_loaders import PyPDFLoader
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
8
  from langchain.chains import ConversationalRetrievalChain
9
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
 
10
  from langchain.memory import ConversationBufferMemory
11
  from langchain_community.llms import HuggingFaceEndpoint
 
12
 
13
  list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
14
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
15
 
16
+ # Funções existentes (load_doc, create_db, initialize_llmchain, etc.) permanecem iguais...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  def format_chat_history(message, chat_history):
19
  formatted_chat_history = []
 
21
  formatted_chat_history.append(f"User: {user_message}")
22
  formatted_chat_history.append(f"Assistant: {bot_message}")
23
  return formatted_chat_history
 
24
 
25
+ # Ajuste na função conversation para suportar idioma
26
+ def conversation(qa_chain, message, history, language):
27
  formatted_chat_history = format_chat_history(message, history)
28
  # Generate response using QA chain
29
  response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
30
  response_answer = response["answer"]
31
  if response_answer.find("Helpful Answer:") != -1:
32
  response_answer = response_answer.split("Helpful Answer:")[-1]
33
+
34
+ # Ajustar resposta com base no idioma
35
+ if language == "Português":
36
+ # Aqui, idealmente, você usaria uma API de tradução ou o modelo geraria diretamente em português
37
+ # Como exemplo, adiciono uma mensagem fixa para demonstrar
38
+ response_answer = f"Resposta em português: {response_answer}"
39
+ else:
40
+ response_answer = f"Response in English: {response_answer}"
41
+
42
  response_sources = response["source_documents"]
43
  response_source1 = response_sources[0].page_content.strip()
44
  response_source2 = response_sources[1].page_content.strip()
45
  response_source3 = response_sources[2].page_content.strip()
 
46
  response_source1_page = response_sources[0].metadata["page"] + 1
47
  response_source2_page = response_sources[1].metadata["page"] + 1
48
  response_source3_page = response_sources[2].metadata["page"] + 1
 
49
  new_history = history + [(message, response_answer)]
50
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
 
 
 
 
 
 
 
 
51
 
52
  def demo():
53
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
 
54
  vector_db = gr.State()
55
  qa_chain = gr.State()
56
+ gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
57
+ gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. \
58
+ <b>Please do not upload confidential documents.</b>""")
59
+
60
  with gr.Row():
61
+ with gr.Column(scale=86):
62
  gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
63
+ document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
64
+ db_btn = gr.Button("Create vector database")
65
+ db_progress = gr.Textbox(value="Not initialized", show_label=False)
66
+ gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
67
+ llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
68
+ with gr.Accordion("LLM input parameters", open=False):
69
+ slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", interactive=True)
70
+ slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", interactive=True)
71
+ slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k", interactive=True)
72
+ qachain_btn = gr.Button("Initialize Question Answering Chatbot")
73
+ llm_progress = gr.Textbox(value="Not initialized", show_label=False)
74
+
75
+ with gr.Column(scale=200):
 
 
 
 
 
 
 
 
 
 
76
  gr.Markdown("<b>Step 2 - Chat with your Document</b>")
77
+ # Adicionar seletor de idioma
78
+ language_selector = gr.Radio(["English", "Português"], label="Select Language", value="English")
79
  chatbot = gr.Chatbot(height=505)
80
+ with gr.Accordion("Relevant context from the source document", open=False):
81
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
82
+ source1_page = gr.Number(label="Page", scale=1)
83
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
84
+ source2_page = gr.Number(label="Page", scale=1)
85
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
86
+ source3_page = gr.Number(label="Page", scale=1)
87
+ msg = gr.Textbox(placeholder="Ask a question", container=True)
88
+ submit_btn = gr.Button("Submit")
89
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
90
+
 
 
 
 
 
91
  # Preprocessing events
92
+ db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
93
+ qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
94
+ lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False
95
+ )
 
 
 
 
 
96
 
97
+ # Chatbot events com o idioma
98
+ msg.submit(conversation, inputs=[qa_chain, msg, chatbot, language_selector], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
99
+ submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, language_selector], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
100
+ clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
 
 
 
 
 
 
 
 
 
 
101
 
102
+ demo.queue().launch(debug=True)
103
 
104
  if __name__ == "__main__":
105
  demo()