File size: 7,243 Bytes
17d10a7
a15d204
d448add
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
cf3593c
ecc69bf
cf3593c
 
3168a3e
 
ecc69bf
cf3593c
 
 
1c1b50f
db8ba25
1c1b50f
ecc69bf
 
dfa5d3e
db8ba25
 
 
 
 
 
 
 
 
 
dfa5d3e
3168a3e
ecc69bf
3168a3e
60b6e41
db8ba25
 
 
dfa5d3e
 
 
 
db8ba25
dfa5d3e
3b58485
e7b189b
17d10a7
db8ba25
 
 
a3b5047
 
 
 
8b6a33e
cf3593c
17d10a7
a3b5047
ecc69bf
3b58485
a3b5047
6f08234
cf3593c
 
d448add
dfa5d3e
ecc69bf
dfa5d3e
ecc69bf
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa5d3e
ecc69bf
 
 
 
 
a3b5047
db8ba25
 
 
ecc69bf
 
a3b5047
dfa5d3e
 
 
5080bd7
ecc69bf
 
 
 
 
60b6e41
 
 
07c07fa
db8ba25
60b6e41
 
ecc69bf
 
 
 
 
 
 
db8ba25
 
ecc69bf
 
db8ba25
60b6e41
ecc69bf
60b6e41
 
ecc69bf
3168a3e
 
a3b5047
3168a3e
 
 
ecc69bf
6f08234
b6700b8
ecc69bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c07fa
60b6e41
ecc69bf
60b6e41
 
b6700b8
60b6e41
ecc69bf
07c07fa
60b6e41
07c07fa
db8ba25
ecc69bf
 
07c07fa
 
db8ba25
07c07fa
ecc69bf
 
 
 
 
 
07c07fa
3fe530b
1a0bb5e
 
 
a8c9cb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import os
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from TTS.api import TTS
import tempfile
from dotenv import load_dotenv
import spaces

# Load environment variables
load_dotenv()
hf_token = os.getenv("HF_TOKEN")

# ---------------------------------------------------------------------
# Load Llama 3 Pipeline with Zero GPU (Encapsulated)
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_script(user_prompt: str, duration: int, model_id: str, token: str):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            use_auth_token=token,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True,
        )
        llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)

        system_prompt = (
            "You are an expert radio imaging producer specializing in sound design and music. "
            f"Generate a concise, creative promo script for a {duration}-second ad, focusing on auditory elements and musical appeal."
        )

        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:"
        result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
        return result[0]["generated_text"].split("Refined script:")[-1].strip()
    except Exception as e:
        return f"Error generating script: {e}"

# ---------------------------------------------------------------------
# Load MusicGen Model (Encapsulated)
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_audio(prompt: str, audio_length: int):
    try:
        musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
        musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")

        device = "cuda" if torch.cuda.is_available() else "cpu"
        musicgen_model.to(device)

        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
        outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")

        output_path = f"{tempfile.gettempdir()}/generated_audio.wav"
        write(output_path, musicgen_model.config.audio_encoder.sampling_rate, normalized_audio)
        return output_path
    except Exception as e:
        return f"Error generating audio: {e}"

# ---------------------------------------------------------------------
# Generate Voice-Over with Coqui XTTS-v2
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_voice(script: str, reference_audio: str, language: str):
    try:
        tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=torch.cuda.is_available())
        output_path = f"{tempfile.gettempdir()}/voice_over.wav"
        tts.tts_to_file(
            text=script,
            file_path=output_path,
            speaker_wav=reference_audio,
            language=language,
        )
        return output_path
    except Exception as e:
        return f"Error generating voice-over: {e}"

# ---------------------------------------------------------------------
# Interface Functions
# ---------------------------------------------------------------------
def interface_generate_script(user_prompt, duration, llama_model_id):
    return generate_script(user_prompt, duration, llama_model_id, hf_token)

def interface_generate_audio(script, audio_length):
    return generate_audio(script, audio_length)

def interface_generate_voice(script, reference_audio, language):
    return generate_voice(script, reference_audio, language)

# ---------------------------------------------------------------------
# Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("""
        # 🎧 All-in-One Radio Promo Studio πŸš€  
        ### Create professional scripts, soundscapes, and voice-overs in minutes!  
        πŸ”₯ Powered by **Llama 3**, **MusicGen**, and **XTTS-v2**
    """)

    # Script Generation Section
    gr.Markdown("## ✍️ Step 1: Generate Your Promo Script")
    with gr.Row():
        user_prompt = gr.Textbox(
            label="🎀 Enter Promo Idea",
            placeholder="E.g., A 15-second energetic jingle for a morning talk show.",
            lines=2
        )
        duration = gr.Dropdown(
            label="⏳ Duration",
            choices=["15", "30", "60"],
            value="15",
            info="Choose the duration of the promo (in seconds)."
        )
        llama_model_id = gr.Textbox(
            label="πŸŽ›οΈ Llama 3 Model ID",
            value="meta-llama/Meta-Llama-3-8B-Instruct"
        )
    generate_script_button = gr.Button("Generate Script ✨")
    script_output = gr.Textbox(label="πŸ–ŒοΈ Generated Promo Script", lines=4, interactive=False)

    # Audio Generation Section
    gr.Markdown("## 🎡 Step 2: Generate Background Music")
    with gr.Row():
        audio_length = gr.Slider(
            label="🎢 Audio Length (tokens)",
            minimum=128,
            maximum=1024,
            step=64,
            value=512
        )
    generate_audio_button = gr.Button("Generate Audio 🎢")
    audio_output = gr.Audio(label="🎡 Generated Audio", type="filepath")

    # Voice-Over Section
    gr.Markdown("## πŸŽ™οΈ Step 3: Generate Voice-Over")
    with gr.Row():
        reference_audio = gr.Audio(
            label="🎀 Upload Reference Voice (6 seconds)",
            type="filepath"
        )
        language = gr.Dropdown(
            label="🌍 Language",
            choices=["en", "es", "fr", "de", "it"],
            value="en"
        )
    generate_voice_button = gr.Button("Generate Voice-Over 🎀")
    voice_output = gr.Audio(label="πŸ”Š Generated Voice-Over", type="filepath")

    # Footer
    gr.Markdown("""
        <br><hr>
        <p style="text-align: center; font-size: 0.9em;">
            Created with ❀️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
        </p>
    """)

    # Button Actions
    generate_script_button.click(
        fn=interface_generate_script,
        inputs=[user_prompt, duration, llama_model_id],
        outputs=script_output
    )
    generate_audio_button.click(
        fn=interface_generate_audio,
        inputs=[script_output, audio_length],
        outputs=audio_output
    )
    generate_voice_button.click(
        fn=interface_generate_voice,
        inputs=[script_output, reference_audio, language],
        outputs=voice_output
    )

# ---------------------------------------------------------------------
# Launch App
# ---------------------------------------------------------------------
demo.launch(debug=True)