Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,62 +11,76 @@ from transformers import (
|
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
-
import spaces
|
15 |
|
16 |
# Load environment variables (e.g., Hugging Face token)
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
# ---------------------------------------------------------------------
|
21 |
-
# Load Llama 3 Model with Zero GPU
|
22 |
# ---------------------------------------------------------------------
|
23 |
@spaces.GPU(duration=120)
|
24 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
model_id,
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# ---------------------------------------------------------------------
|
39 |
# Generate Radio Script
|
40 |
# ---------------------------------------------------------------------
|
41 |
-
def generate_script(user_input: str,
|
42 |
try:
|
43 |
system_prompt = (
|
44 |
"You are a top-tier radio imaging producer using Llama 3. "
|
45 |
"Take the user's concept and craft a short, creative promo script."
|
46 |
)
|
47 |
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
48 |
-
result =
|
49 |
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
50 |
except Exception as e:
|
51 |
return f"Error generating script: {e}"
|
52 |
|
53 |
-
# ---------------------------------------------------------------------
|
54 |
-
# Load MusicGen Model
|
55 |
-
# ---------------------------------------------------------------------
|
56 |
-
@spaces.GPU(duration=120)
|
57 |
-
def load_musicgen_model():
|
58 |
-
try:
|
59 |
-
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
60 |
-
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
61 |
-
return model, processor
|
62 |
-
except Exception as e:
|
63 |
-
return None, str(e)
|
64 |
-
|
65 |
# ---------------------------------------------------------------------
|
66 |
# Generate Audio
|
67 |
# ---------------------------------------------------------------------
|
68 |
@spaces.GPU(duration=120)
|
69 |
-
def generate_audio(prompt: str, audio_length: int
|
|
|
|
|
|
|
|
|
70 |
try:
|
71 |
mg_model.to("cuda") # Move the model to GPU
|
72 |
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
@@ -87,24 +101,16 @@ def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
|
87 |
# Gradio Interface
|
88 |
# ---------------------------------------------------------------------
|
89 |
def radio_imaging_script(user_prompt, llama_model_id):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
return pipeline_llama
|
94 |
|
95 |
# Generate Script
|
96 |
-
script = generate_script(user_prompt,
|
97 |
return script
|
98 |
|
99 |
def radio_imaging_audio(script, audio_length):
|
100 |
-
|
101 |
-
mg_model, mg_processor = load_musicgen_model()
|
102 |
-
if isinstance(mg_processor, str):
|
103 |
-
return mg_processor
|
104 |
-
|
105 |
-
# Generate Audio
|
106 |
-
audio_data = generate_audio(script, audio_length, mg_model, mg_processor)
|
107 |
-
return audio_data
|
108 |
|
109 |
# ---------------------------------------------------------------------
|
110 |
# Interface
|
|
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
+
import spaces
|
15 |
|
16 |
# Load environment variables (e.g., Hugging Face token)
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
+
# Globals for Lazy Loading
|
21 |
+
llama_pipeline = None
|
22 |
+
musicgen_model = None
|
23 |
+
musicgen_processor = None
|
24 |
+
|
25 |
# ---------------------------------------------------------------------
|
26 |
+
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
27 |
# ---------------------------------------------------------------------
|
28 |
@spaces.GPU(duration=120)
|
29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
30 |
+
global llama_pipeline
|
31 |
+
if llama_pipeline is None:
|
32 |
+
try:
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
35 |
+
model_id,
|
36 |
+
use_auth_token=token,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
device_map="auto", # Automatically handles GPU allocation
|
39 |
+
trust_remote_code=True
|
40 |
+
)
|
41 |
+
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error loading Llama pipeline: {e}"
|
44 |
+
return llama_pipeline
|
45 |
+
|
46 |
+
# ---------------------------------------------------------------------
|
47 |
+
# Load MusicGen Model (Lazy Loading)
|
48 |
+
# ---------------------------------------------------------------------
|
49 |
+
@spaces.GPU(duration=120)
|
50 |
+
def load_musicgen_model():
|
51 |
+
global musicgen_model, musicgen_processor
|
52 |
+
if musicgen_model is None or musicgen_processor is None:
|
53 |
+
try:
|
54 |
+
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
55 |
+
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
56 |
+
except Exception as e:
|
57 |
+
return None, f"Error loading MusicGen model: {e}"
|
58 |
+
return musicgen_model, musicgen_processor
|
59 |
|
60 |
# ---------------------------------------------------------------------
|
61 |
# Generate Radio Script
|
62 |
# ---------------------------------------------------------------------
|
63 |
+
def generate_script(user_input: str, llama_pipeline):
|
64 |
try:
|
65 |
system_prompt = (
|
66 |
"You are a top-tier radio imaging producer using Llama 3. "
|
67 |
"Take the user's concept and craft a short, creative promo script."
|
68 |
)
|
69 |
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
70 |
+
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
71 |
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
72 |
except Exception as e:
|
73 |
return f"Error generating script: {e}"
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# ---------------------------------------------------------------------
|
76 |
# Generate Audio
|
77 |
# ---------------------------------------------------------------------
|
78 |
@spaces.GPU(duration=120)
|
79 |
+
def generate_audio(prompt: str, audio_length: int):
|
80 |
+
mg_model, mg_processor = load_musicgen_model()
|
81 |
+
if mg_model is None or isinstance(mg_processor, str):
|
82 |
+
return mg_processor
|
83 |
+
|
84 |
try:
|
85 |
mg_model.to("cuda") # Move the model to GPU
|
86 |
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
|
|
101 |
# Gradio Interface
|
102 |
# ---------------------------------------------------------------------
|
103 |
def radio_imaging_script(user_prompt, llama_model_id):
|
104 |
+
llama_pipeline = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
105 |
+
if isinstance(llama_pipeline, str):
|
106 |
+
return llama_pipeline
|
|
|
107 |
|
108 |
# Generate Script
|
109 |
+
script = generate_script(user_prompt, llama_pipeline)
|
110 |
return script
|
111 |
|
112 |
def radio_imaging_audio(script, audio_length):
|
113 |
+
return generate_audio(script, audio_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# ---------------------------------------------------------------------
|
116 |
# Interface
|