Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,11 +11,15 @@ from transformers import (
|
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
-
import spaces
|
15 |
|
|
|
16 |
load_dotenv()
|
17 |
hf_token = os.getenv("HF_TOKEN")
|
18 |
|
|
|
|
|
|
|
19 |
@spaces.GPU(duration=120)
|
20 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
21 |
try:
|
@@ -24,20 +28,50 @@ def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
|
24 |
model_id,
|
25 |
use_auth_token=token,
|
26 |
torch_dtype=torch.float16,
|
27 |
-
device_map="auto",
|
28 |
trust_remote_code=True
|
29 |
)
|
30 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
31 |
except Exception as e:
|
32 |
return str(e)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
@spaces.GPU(duration=120)
|
35 |
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
36 |
try:
|
37 |
-
mg_model.to("cuda")
|
38 |
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
39 |
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
40 |
-
mg_model.to("cpu")
|
41 |
|
42 |
sr = mg_model.config.audio_encoder.sampling_rate
|
43 |
audio_data = outputs[0, 0].cpu().numpy()
|
@@ -49,6 +83,33 @@ def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
|
49 |
except Exception as e:
|
50 |
return f"Error generating audio: {e}"
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
with gr.Blocks() as demo:
|
53 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
54 |
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
@@ -61,7 +122,7 @@ with gr.Blocks() as demo:
|
|
61 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
62 |
|
63 |
generate_button.click(
|
64 |
-
fn=
|
65 |
inputs=[user_prompt, llama_model_id, hf_token, audio_length],
|
66 |
outputs=[script_output, audio_output]
|
67 |
)
|
|
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
+
import spaces # Assumes Hugging Face Spaces library supports `@spaces.GPU`
|
15 |
|
16 |
+
# Load environment variables (e.g., Hugging Face token)
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
+
# ---------------------------------------------------------------------
|
21 |
+
# Load Llama 3 Model with Zero GPU
|
22 |
+
# ---------------------------------------------------------------------
|
23 |
@spaces.GPU(duration=120)
|
24 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
25 |
try:
|
|
|
28 |
model_id,
|
29 |
use_auth_token=token,
|
30 |
torch_dtype=torch.float16,
|
31 |
+
device_map="auto", # Automatically handles GPU allocation
|
32 |
trust_remote_code=True
|
33 |
)
|
34 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
35 |
except Exception as e:
|
36 |
return str(e)
|
37 |
|
38 |
+
# ---------------------------------------------------------------------
|
39 |
+
# Generate Radio Script
|
40 |
+
# ---------------------------------------------------------------------
|
41 |
+
def generate_script(user_input: str, pipeline_llama):
|
42 |
+
try:
|
43 |
+
system_prompt = (
|
44 |
+
"You are a top-tier radio imaging producer using Llama 3. "
|
45 |
+
"Take the user's concept and craft a short, creative promo script."
|
46 |
+
)
|
47 |
+
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
48 |
+
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
49 |
+
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error generating script: {e}"
|
52 |
+
|
53 |
+
# ---------------------------------------------------------------------
|
54 |
+
# Load MusicGen Model
|
55 |
+
# ---------------------------------------------------------------------
|
56 |
+
@spaces.GPU(duration=120)
|
57 |
+
def load_musicgen_model():
|
58 |
+
try:
|
59 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
60 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
61 |
+
return model, processor
|
62 |
+
except Exception as e:
|
63 |
+
return None, str(e)
|
64 |
+
|
65 |
+
# ---------------------------------------------------------------------
|
66 |
+
# Generate Audio
|
67 |
+
# ---------------------------------------------------------------------
|
68 |
@spaces.GPU(duration=120)
|
69 |
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
70 |
try:
|
71 |
+
mg_model.to("cuda") # Move the model to GPU
|
72 |
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
73 |
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
74 |
+
mg_model.to("cpu") # Return the model to CPU
|
75 |
|
76 |
sr = mg_model.config.audio_encoder.sampling_rate
|
77 |
audio_data = outputs[0, 0].cpu().numpy()
|
|
|
83 |
except Exception as e:
|
84 |
return f"Error generating audio: {e}"
|
85 |
|
86 |
+
# ---------------------------------------------------------------------
|
87 |
+
# Gradio Interface
|
88 |
+
# ---------------------------------------------------------------------
|
89 |
+
def radio_imaging_app(user_prompt, llama_model_id, hf_token, audio_length):
|
90 |
+
# Load Llama 3 Pipeline with Zero GPU
|
91 |
+
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
92 |
+
if isinstance(pipeline_llama, str):
|
93 |
+
return pipeline_llama, None
|
94 |
+
|
95 |
+
# Generate Script
|
96 |
+
script = generate_script(user_prompt, pipeline_llama)
|
97 |
+
|
98 |
+
# Load MusicGen
|
99 |
+
mg_model, mg_processor = load_musicgen_model()
|
100 |
+
if isinstance(mg_processor, str):
|
101 |
+
return script, mg_processor
|
102 |
+
|
103 |
+
# Generate Audio
|
104 |
+
audio_data = generate_audio(script, audio_length, mg_model, mg_processor)
|
105 |
+
if isinstance(audio_data, str):
|
106 |
+
return script, audio_data
|
107 |
+
|
108 |
+
return script, audio_data
|
109 |
+
|
110 |
+
# ---------------------------------------------------------------------
|
111 |
+
# Interface
|
112 |
+
# ---------------------------------------------------------------------
|
113 |
with gr.Blocks() as demo:
|
114 |
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
115 |
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
|
|
122 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
123 |
|
124 |
generate_button.click(
|
125 |
+
fn=radio_imaging_app,
|
126 |
inputs=[user_prompt, llama_model_id, hf_token, audio_length],
|
127 |
outputs=[script_output, audio_output]
|
128 |
)
|