Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,13 +11,13 @@ from transformers import (
|
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
-
import spaces
|
15 |
|
16 |
# Load environment variables (e.g., Hugging Face token)
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
-
# Globals for
|
21 |
llama_pipeline = None
|
22 |
musicgen_model = None
|
23 |
musicgen_processor = None
|
@@ -25,12 +25,14 @@ musicgen_processor = None
|
|
25 |
# ---------------------------------------------------------------------
|
26 |
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
27 |
# ---------------------------------------------------------------------
|
28 |
-
@spaces.GPU(duration=
|
29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
30 |
global llama_pipeline
|
31 |
if llama_pipeline is None:
|
32 |
try:
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
|
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
model_id,
|
36 |
use_auth_token=token,
|
@@ -38,56 +40,63 @@ def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
|
38 |
device_map="auto", # Automatically handles GPU allocation
|
39 |
trust_remote_code=True
|
40 |
)
|
|
|
41 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
42 |
except Exception as e:
|
43 |
-
|
|
|
44 |
return llama_pipeline
|
45 |
|
46 |
-
# ---------------------------------------------------------------------
|
47 |
-
# Load MusicGen Model (Lazy Loading)
|
48 |
-
# ---------------------------------------------------------------------
|
49 |
-
@spaces.GPU(duration=120)
|
50 |
-
def load_musicgen_model():
|
51 |
-
global musicgen_model, musicgen_processor
|
52 |
-
if musicgen_model is None or musicgen_processor is None:
|
53 |
-
try:
|
54 |
-
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
55 |
-
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
56 |
-
except Exception as e:
|
57 |
-
return None, f"Error loading MusicGen model: {e}"
|
58 |
-
return musicgen_model, musicgen_processor
|
59 |
-
|
60 |
# ---------------------------------------------------------------------
|
61 |
# Generate Radio Script
|
62 |
# ---------------------------------------------------------------------
|
63 |
-
def generate_script(user_input: str,
|
64 |
try:
|
65 |
system_prompt = (
|
66 |
"You are a top-tier radio imaging producer using Llama 3. "
|
67 |
"Take the user's concept and craft a short, creative promo script."
|
68 |
)
|
69 |
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
70 |
-
result =
|
71 |
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
72 |
except Exception as e:
|
73 |
return f"Error generating script: {e}"
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# ---------------------------------------------------------------------
|
76 |
# Generate Audio
|
77 |
# ---------------------------------------------------------------------
|
78 |
-
@spaces.GPU(duration=
|
79 |
def generate_audio(prompt: str, audio_length: int):
|
80 |
-
|
81 |
-
if
|
82 |
-
|
83 |
-
|
|
|
84 |
try:
|
85 |
-
|
86 |
-
inputs =
|
87 |
-
outputs =
|
88 |
-
|
89 |
|
90 |
-
sr =
|
91 |
audio_data = outputs[0, 0].cpu().numpy()
|
92 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
93 |
|
@@ -101,16 +110,19 @@ def generate_audio(prompt: str, audio_length: int):
|
|
101 |
# Gradio Interface
|
102 |
# ---------------------------------------------------------------------
|
103 |
def radio_imaging_script(user_prompt, llama_model_id):
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
|
108 |
# Generate Script
|
109 |
-
script = generate_script(user_prompt,
|
110 |
return script
|
111 |
|
112 |
def radio_imaging_audio(script, audio_length):
|
113 |
-
|
|
|
|
|
114 |
|
115 |
# ---------------------------------------------------------------------
|
116 |
# Interface
|
@@ -120,31 +132,29 @@ with gr.Blocks() as demo:
|
|
120 |
|
121 |
# Script Generation Section
|
122 |
with gr.Row():
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
)
|
135 |
|
136 |
# Audio Generation Section
|
137 |
with gr.Row():
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
)
|
149 |
|
150 |
demo.launch(debug=True)
|
|
|
11 |
from scipy.io.wavfile import write
|
12 |
import tempfile
|
13 |
from dotenv import load_dotenv
|
14 |
+
import spaces # Assumes Hugging Face Spaces library supports `@spaces.GPU`
|
15 |
|
16 |
# Load environment variables (e.g., Hugging Face token)
|
17 |
load_dotenv()
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
+
# Globals for lazy loading
|
21 |
llama_pipeline = None
|
22 |
musicgen_model = None
|
23 |
musicgen_processor = None
|
|
|
25 |
# ---------------------------------------------------------------------
|
26 |
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
27 |
# ---------------------------------------------------------------------
|
28 |
+
@spaces.GPU(duration=300) # Increased duration to 300 seconds
|
29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
30 |
global llama_pipeline
|
31 |
if llama_pipeline is None:
|
32 |
try:
|
33 |
+
print("Starting model loading...")
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
35 |
+
print("Tokenizer loaded.")
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
model_id,
|
38 |
use_auth_token=token,
|
|
|
40 |
device_map="auto", # Automatically handles GPU allocation
|
41 |
trust_remote_code=True
|
42 |
)
|
43 |
+
print("Model loaded. Initializing pipeline...")
|
44 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
45 |
+
print("Pipeline initialized successfully.")
|
46 |
except Exception as e:
|
47 |
+
print(f"Error loading Llama pipeline: {e}")
|
48 |
+
return str(e)
|
49 |
return llama_pipeline
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# ---------------------------------------------------------------------
|
52 |
# Generate Radio Script
|
53 |
# ---------------------------------------------------------------------
|
54 |
+
def generate_script(user_input: str, pipeline_llama):
|
55 |
try:
|
56 |
system_prompt = (
|
57 |
"You are a top-tier radio imaging producer using Llama 3. "
|
58 |
"Take the user's concept and craft a short, creative promo script."
|
59 |
)
|
60 |
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
61 |
+
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
62 |
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
63 |
except Exception as e:
|
64 |
return f"Error generating script: {e}"
|
65 |
|
66 |
+
# ---------------------------------------------------------------------
|
67 |
+
# Load MusicGen Model (Lazy Loading)
|
68 |
+
# ---------------------------------------------------------------------
|
69 |
+
@spaces.GPU(duration=300)
|
70 |
+
def load_musicgen_model():
|
71 |
+
global musicgen_model, musicgen_processor
|
72 |
+
if musicgen_model is None or musicgen_processor is None:
|
73 |
+
try:
|
74 |
+
print("Loading MusicGen model...")
|
75 |
+
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
76 |
+
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
77 |
+
print("MusicGen model loaded successfully.")
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Error loading MusicGen model: {e}")
|
80 |
+
return None, str(e)
|
81 |
+
return musicgen_model, musicgen_processor
|
82 |
+
|
83 |
# ---------------------------------------------------------------------
|
84 |
# Generate Audio
|
85 |
# ---------------------------------------------------------------------
|
86 |
+
@spaces.GPU(duration=300)
|
87 |
def generate_audio(prompt: str, audio_length: int):
|
88 |
+
global musicgen_model, musicgen_processor
|
89 |
+
if musicgen_model is None or musicgen_processor is None:
|
90 |
+
musicgen_model, musicgen_processor = load_musicgen_model()
|
91 |
+
if isinstance(musicgen_model, str):
|
92 |
+
return musicgen_model
|
93 |
try:
|
94 |
+
musicgen_model.to("cuda") # Move the model to GPU
|
95 |
+
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
96 |
+
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
97 |
+
musicgen_model.to("cpu") # Return the model to CPU
|
98 |
|
99 |
+
sr = musicgen_model.config.audio_encoder.sampling_rate
|
100 |
audio_data = outputs[0, 0].cpu().numpy()
|
101 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
102 |
|
|
|
110 |
# Gradio Interface
|
111 |
# ---------------------------------------------------------------------
|
112 |
def radio_imaging_script(user_prompt, llama_model_id):
|
113 |
+
# Load Llama 3 Pipeline with Zero GPU
|
114 |
+
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
115 |
+
if isinstance(pipeline_llama, str):
|
116 |
+
return pipeline_llama
|
117 |
|
118 |
# Generate Script
|
119 |
+
script = generate_script(user_prompt, pipeline_llama)
|
120 |
return script
|
121 |
|
122 |
def radio_imaging_audio(script, audio_length):
|
123 |
+
# Generate Audio
|
124 |
+
audio_data = generate_audio(script, audio_length)
|
125 |
+
return audio_data
|
126 |
|
127 |
# ---------------------------------------------------------------------
|
128 |
# Interface
|
|
|
132 |
|
133 |
# Script Generation Section
|
134 |
with gr.Row():
|
135 |
+
gr.Markdown("## Step 1: Generate the Promo Script")
|
136 |
+
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
137 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B")
|
138 |
+
generate_script_button = gr.Button("Generate Promo Script")
|
139 |
+
script_output = gr.Textbox(label="Generated Script", interactive=False)
|
140 |
+
|
141 |
+
generate_script_button.click(
|
142 |
+
fn=radio_imaging_script,
|
143 |
+
inputs=[user_prompt, llama_model_id],
|
144 |
+
outputs=script_output
|
145 |
+
)
|
|
|
146 |
|
147 |
# Audio Generation Section
|
148 |
with gr.Row():
|
149 |
+
gr.Markdown("## Step 2: Generate the Sound")
|
150 |
+
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
151 |
+
generate_audio_button = gr.Button("Generate Sound from Script")
|
152 |
+
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
153 |
+
|
154 |
+
generate_audio_button.click(
|
155 |
+
fn=radio_imaging_audio,
|
156 |
+
inputs=[script_output, audio_length],
|
157 |
+
outputs=audio_output
|
158 |
+
)
|
|
|
159 |
|
160 |
demo.launch(debug=True)
|