File size: 15,535 Bytes
17d10a7
a15d204
d448add
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
cf3593c
d9bf0f0
b950350
6aba99a
3168a3e
3e34a93
 
019c404
3168a3e
3e34a93
 
 
cf3593c
3e34a93
5607a62
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0105281
3e34a93
 
0105281
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa5d3e
3e34a93
 
 
 
 
 
 
 
3168a3e
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de59b3
b950350
3e34a93
2de59b3
0105281
3e34a93
 
 
 
 
 
 
 
 
b950350
559ca26
3e34a93
 
 
 
 
 
 
 
 
dfa5d3e
3e34a93
 
0105281
3e34a93
 
 
 
 
 
 
 
 
17d10a7
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf3593c
3e34a93
 
0105281
3e34a93
 
 
 
 
 
 
 
 
 
 
 
ecc69bf
3e34a93
 
 
559ca26
 
0105281
3e34a93
 
 
 
 
 
 
 
 
 
0105281
3e34a93
 
 
 
 
559ca26
3e34a93
 
 
 
 
 
 
 
 
 
 
0105281
d9bf0f0
3e34a93
 
 
 
0105281
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
0105281
8d064dc
35e8eba
3e34a93
 
464b686
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0105281
 
3e34a93
 
 
 
0105281
3e34a93
 
 
 
 
0105281
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b531cd
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b531cd
3e34a93
 
 
 
7b531cd
ab6cd42
3e34a93
 
 
 
 
 
3fe530b
3e34a93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import gradio as gr
import os
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces

# Coqui TTS
from TTS.api import TTS

# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}

# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
    """
    Returns a cached LLaMA pipeline if available; otherwise, loads it.
    """
    if model_id in LLAMA_PIPELINES:
        return LLAMA_PIPELINES[model_id]

    tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        use_auth_token=token,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True,
    )
    text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
    LLAMA_PIPELINES[model_id] = text_pipeline
    return text_pipeline


def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
    """
    Returns a cached MusicGen model if available; otherwise, loads it.
    Uses the 'large' variant for higher quality outputs.
    """
    if model_key in MUSICGEN_MODELS:
        return MUSICGEN_MODELS[model_key]

    model = MusicgenForConditionalGeneration.from_pretrained(model_key)
    processor = AutoProcessor.from_pretrained(model_key)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    MUSICGEN_MODELS[model_key] = (model, processor)
    return model, processor


def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
    """
    Returns a cached TTS model if available; otherwise, loads it.
    """
    if model_name in TTS_MODELS:
        return TTS_MODELS[model_name]

    tts_model = TTS(model_name)
    TTS_MODELS[model_name] = tts_model
    return tts_model


# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
    """
    Generates a script, sound design suggestions, and music ideas from a user prompt.
    Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
    """
    try:
        text_pipeline = get_llama_pipeline(model_id, token)

        system_prompt = (
            "You are an expert radio imaging producer specializing in sound design and music. "
            f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
            "1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
            "2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
            "3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
        )
        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"

        with torch.inference_mode():
            result = text_pipeline(
                combined_prompt,
                max_new_tokens=300,
                do_sample=True,
                temperature=0.8
            )

        generated_text = result[0]["generated_text"]
        if "Output:" in generated_text:
            generated_text = generated_text.split("Output:")[-1].strip()

        # Default placeholders
        voice_script = "No voice-over script found."
        sound_design = "No sound design suggestions found."
        music_suggestions = "No music suggestions found."

        # Voice-Over Script
        if "Voice-Over Script:" in generated_text:
            parts = generated_text.split("Voice-Over Script:")
            voice_script_part = parts[1]
            if "Sound Design Suggestions:" in voice_script_part:
                voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
            else:
                voice_script = voice_script_part.strip()

        # Sound Design
        if "Sound Design Suggestions:" in generated_text:
            parts = generated_text.split("Sound Design Suggestions:")
            sound_design_part = parts[1]
            if "Music Suggestions:" in sound_design_part:
                sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
            else:
                sound_design = sound_design_part.strip()

        # Music Suggestions
        if "Music Suggestions:" in generated_text:
            parts = generated_text.split("Music Suggestions:")
            music_suggestions = parts[1].strip()

        return voice_script, sound_design, music_suggestions

    except Exception as e:
        return f"Error generating script: {e}", "", ""


# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
    """
    Generates a voice-over from the provided script using the Coqui TTS model.
    Returns the file path to the generated .wav file.
    """
    try:
        if not script.strip():
            return "Error: No script provided."

        tts_model = get_tts_model(tts_model_name)

        # Generate and save voice
        output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
        tts_model.tts_to_file(text=script, file_path=output_path)
        return output_path

    except Exception as e:
        return f"Error generating voice: {e}"


# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_music(prompt: str, audio_length: int):
    """
    Generates music from the 'facebook/musicgen-large' model based on the prompt.
    Returns the file path to the generated .wav file.
    """
    try:
        if not prompt.strip():
            return "Error: No music suggestion provided."

        model_key = "facebook/musicgen-large"
        musicgen_model, musicgen_processor = get_musicgen_model(model_key)

        device = "cuda" if torch.cuda.is_available() else "cpu"
        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)

        with torch.inference_mode():
            outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")

        output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav"
        write(output_path, 44100, normalized_audio)

        return output_path

    except Exception as e:
        return f"Error generating music: {e}"


# ---------------------------------------------------------------------
# Audio Blending with Duration Sync & Ducking
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
    """
    Blends two audio files (voice and music).
    1. If music < voice, loops the music until it meets/exceeds the voice duration.
    2. If music > voice, trims music to the voice duration.
    3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
    Returns the file path to the blended .wav file.
    """
    try:
        if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
            return "Error: Missing audio files for blending."

        voice = AudioSegment.from_wav(voice_path)
        music = AudioSegment.from_wav(music_path)

        voice_len = len(voice)  # in milliseconds
        music_len = len(music)  # in milliseconds

        # 1) If the music is shorter than the voice, loop it:
        if music_len < voice_len:
            looped_music = AudioSegment.empty()
            # Keep appending until we exceed voice length
            while len(looped_music) < voice_len:
                looped_music += music
            music = looped_music

        # 2) If the music is longer than the voice, truncate it:
        if len(music) > voice_len:
            music = music[:voice_len]

        # Now music and voice are the same length
        if ducking:
            # Step 1: Reduce music dB while voice is playing
            ducked_music = music - duck_level
            # Step 2: Overlay voice on top of ducked music
            final_audio = ducked_music.overlay(voice)
        else:
            # No ducking, just overlay
            final_audio = music.overlay(voice)

        output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
        final_audio.export(output_path, format="wav")
        return output_path

    except Exception as e:
        return f"Error blending audio: {e}"


# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("""
# 🎧 AI Promo Studio
Welcome to **AI Promo Studio**, your all-in-one solution for creating professional, engaging audio promos with minimal effort!  

This next-generation platform uses powerful AI models to handle:
- **Script Generation**: Craft concise and impactful copy with LLaMA.
- **Voice Synthesis**: Convert text into natural-sounding voice-overs using Coqui TTS.
- **Music Production**: Generate custom music tracks with MusicGen Large for sound bed.
- **Seamless Blending**: Easily combine voice and music—loop or trim tracks to match your desired promo length, with optional ducking to keep the voice front and center.

Whether you’re a radio producer, podcaster, or content creator, **AI Promo Studio** streamlines your entire production pipeline—cutting hours of manual editing down to a few clicks.
""")


    with gr.Tabs():
        # Step 1: Generate Script
        with gr.Tab("Step 1: Generate Script"):
            with gr.Row():
                user_prompt = gr.Textbox(
                    label="Promo Idea", 
                    placeholder="E.g., A 30-second promo for a morning show...",
                    lines=2
                )
                llama_model_id = gr.Textbox(
                    label="LLaMA Model ID", 
                    value="meta-llama/Meta-Llama-3-8B-Instruct", 
                    placeholder="Enter a valid Hugging Face model ID"
                )
                duration = gr.Slider(
                    label="Desired Promo Duration (seconds)",
                    minimum=15, 
                    maximum=60, 
                    step=15, 
                    value=30
                )

            generate_script_button = gr.Button("Generate Script")
            script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
            sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
            music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)

            generate_script_button.click(
                fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
                inputs=[user_prompt, llama_model_id, duration],
                outputs=[script_output, sound_design_output, music_suggestion_output],
            )

        # Step 2: Generate Voice
        with gr.Tab("Step 2: Generate Voice"):
            gr.Markdown("Generate the voice-over using a Coqui TTS model.")
            selected_tts_model = gr.Dropdown(
                label="TTS Model",
                choices=[
                    "tts_models/en/ljspeech/tacotron2-DDC",  
                    "tts_models/en/ljspeech/vits", 
                    "tts_models/en/sam/tacotron-DDC", 
                ],
                value="tts_models/en/ljspeech/tacotron2-DDC",
                multiselect=False
            )
            generate_voice_button = gr.Button("Generate Voice-Over")
            voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")

            generate_voice_button.click(
                fn=lambda script, tts_model: generate_voice(script, tts_model),
                inputs=[script_output, selected_tts_model],
                outputs=voice_audio_output,
            )

        # Step 3: Generate Music (MusicGen Large)
        with gr.Tab("Step 3: Generate Music"):
            gr.Markdown("Generate a music track with the **MusicGen Large** model.")
            audio_length = gr.Slider(
                label="Music Length (tokens)",
                minimum=128, 
                maximum=1024, 
                step=64, 
                value=512,
                info="Increase tokens for longer audio, but be mindful of inference time."
            )
            generate_music_button = gr.Button("Generate Music")
            music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")

            generate_music_button.click(
                fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
                inputs=[music_suggestion_output, audio_length],
                outputs=[music_output],
            )

        # Step 4: Blend Audio (Loop/Trim + Ducking)
        with gr.Tab("Step 4: Blend Audio"):
            gr.Markdown("**Music** will be looped or trimmed to match **Voice** duration, then optionally ducked.")
            ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
            duck_level_slider = gr.Slider(
                label="Ducking Level (dB attenuation)", 
                minimum=0, 
                maximum=20, 
                step=1, 
                value=10
            )
            blend_button = gr.Button("Blend Voice + Music")
            blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")

            blend_button.click(
                fn=blend_audio,
                inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
                outputs=blended_output
            )

    # Footer
    gr.Markdown("""
    <hr>
    <p style="text-align: center; font-size: 0.9em;">
        Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
    </p>
    """)
    
    # Visitor Badge
    gr.HTML("""
    <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
        <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
    </a>
    """)

demo.launch(debug=True)