Spaces:
Sleeping
Sleeping
File size: 15,535 Bytes
17d10a7 a15d204 d448add db46bfb 1c1b50f db46bfb 1c1b50f db8ba25 db46bfb cf3593c d9bf0f0 b950350 6aba99a 3168a3e 3e34a93 019c404 3168a3e 3e34a93 cf3593c 3e34a93 5607a62 3e34a93 0105281 3e34a93 0105281 3e34a93 dfa5d3e 3e34a93 3168a3e 3e34a93 2de59b3 b950350 3e34a93 2de59b3 0105281 3e34a93 b950350 559ca26 3e34a93 dfa5d3e 3e34a93 0105281 3e34a93 17d10a7 3e34a93 cf3593c 3e34a93 0105281 3e34a93 ecc69bf 3e34a93 559ca26 0105281 3e34a93 0105281 3e34a93 559ca26 3e34a93 0105281 d9bf0f0 3e34a93 0105281 3e34a93 0105281 8d064dc 35e8eba 3e34a93 464b686 3e34a93 0105281 3e34a93 0105281 3e34a93 0105281 3e34a93 7b531cd 3e34a93 7b531cd 3e34a93 7b531cd ab6cd42 3e34a93 3fe530b 3e34a93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
# Coqui TTS
from TTS.api import TTS
# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}
# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
"""
Returns a cached LLaMA pipeline if available; otherwise, loads it.
"""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
"""
Returns a cached MusicGen model if available; otherwise, loads it.
Uses the 'large' variant for higher quality outputs.
"""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Returns a cached TTS model if available; otherwise, loads it.
"""
if model_name in TTS_MODELS:
return TTS_MODELS[model_name]
tts_model = TTS(model_name)
TTS_MODELS[model_name] = tts_model
return tts_model
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
"""
Generates a script, sound design suggestions, and music ideas from a user prompt.
Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
with torch.inference_mode():
result = text_pipeline(
combined_prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.8
)
generated_text = result[0]["generated_text"]
if "Output:" in generated_text:
generated_text = generated_text.split("Output:")[-1].strip()
# Default placeholders
voice_script = "No voice-over script found."
sound_design = "No sound design suggestions found."
music_suggestions = "No music suggestions found."
# Voice-Over Script
if "Voice-Over Script:" in generated_text:
parts = generated_text.split("Voice-Over Script:")
voice_script_part = parts[1]
if "Sound Design Suggestions:" in voice_script_part:
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
else:
voice_script = voice_script_part.strip()
# Sound Design
if "Sound Design Suggestions:" in generated_text:
parts = generated_text.split("Sound Design Suggestions:")
sound_design_part = parts[1]
if "Music Suggestions:" in sound_design_part:
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
else:
sound_design = sound_design_part.strip()
# Music Suggestions
if "Music Suggestions:" in generated_text:
parts = generated_text.split("Music Suggestions:")
music_suggestions = parts[1].strip()
return voice_script, sound_design, music_suggestions
except Exception as e:
return f"Error generating script: {e}", "", ""
# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Generates a voice-over from the provided script using the Coqui TTS model.
Returns the file path to the generated .wav file.
"""
try:
if not script.strip():
return "Error: No script provided."
tts_model = get_tts_model(tts_model_name)
# Generate and save voice
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
tts_model.tts_to_file(text=script, file_path=output_path)
return output_path
except Exception as e:
return f"Error generating voice: {e}"
# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_music(prompt: str, audio_length: int):
"""
Generates music from the 'facebook/musicgen-large' model based on the prompt.
Returns the file path to the generated .wav file.
"""
try:
if not prompt.strip():
return "Error: No music suggestion provided."
model_key = "facebook/musicgen-large"
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
with torch.inference_mode():
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav"
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Audio Blending with Duration Sync & Ducking
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
"""
Blends two audio files (voice and music).
1. If music < voice, loops the music until it meets/exceeds the voice duration.
2. If music > voice, trims music to the voice duration.
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
Returns the file path to the blended .wav file.
"""
try:
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
return "Error: Missing audio files for blending."
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
voice_len = len(voice) # in milliseconds
music_len = len(music) # in milliseconds
# 1) If the music is shorter than the voice, loop it:
if music_len < voice_len:
looped_music = AudioSegment.empty()
# Keep appending until we exceed voice length
while len(looped_music) < voice_len:
looped_music += music
music = looped_music
# 2) If the music is longer than the voice, truncate it:
if len(music) > voice_len:
music = music[:voice_len]
# Now music and voice are the same length
if ducking:
# Step 1: Reduce music dB while voice is playing
ducked_music = music - duck_level
# Step 2: Overlay voice on top of ducked music
final_audio = ducked_music.overlay(voice)
else:
# No ducking, just overlay
final_audio = music.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
final_audio.export(output_path, format="wav")
return output_path
except Exception as e:
return f"Error blending audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("""
# 🎧 AI Promo Studio
Welcome to **AI Promo Studio**, your all-in-one solution for creating professional, engaging audio promos with minimal effort!
This next-generation platform uses powerful AI models to handle:
- **Script Generation**: Craft concise and impactful copy with LLaMA.
- **Voice Synthesis**: Convert text into natural-sounding voice-overs using Coqui TTS.
- **Music Production**: Generate custom music tracks with MusicGen Large for sound bed.
- **Seamless Blending**: Easily combine voice and music—loop or trim tracks to match your desired promo length, with optional ducking to keep the voice front and center.
Whether you’re a radio producer, podcaster, or content creator, **AI Promo Studio** streamlines your entire production pipeline—cutting hours of manual editing down to a few clicks.
""")
with gr.Tabs():
# Step 1: Generate Script
with gr.Tab("Step 1: Generate Script"):
with gr.Row():
user_prompt = gr.Textbox(
label="Promo Idea",
placeholder="E.g., A 30-second promo for a morning show...",
lines=2
)
llama_model_id = gr.Textbox(
label="LLaMA Model ID",
value="meta-llama/Meta-Llama-3-8B-Instruct",
placeholder="Enter a valid Hugging Face model ID"
)
duration = gr.Slider(
label="Desired Promo Duration (seconds)",
minimum=15,
maximum=60,
step=15,
value=30
)
generate_script_button = gr.Button("Generate Script")
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
generate_script_button.click(
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, sound_design_output, music_suggestion_output],
)
# Step 2: Generate Voice
with gr.Tab("Step 2: Generate Voice"):
gr.Markdown("Generate the voice-over using a Coqui TTS model.")
selected_tts_model = gr.Dropdown(
label="TTS Model",
choices=[
"tts_models/en/ljspeech/tacotron2-DDC",
"tts_models/en/ljspeech/vits",
"tts_models/en/sam/tacotron-DDC",
],
value="tts_models/en/ljspeech/tacotron2-DDC",
multiselect=False
)
generate_voice_button = gr.Button("Generate Voice-Over")
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
generate_voice_button.click(
fn=lambda script, tts_model: generate_voice(script, tts_model),
inputs=[script_output, selected_tts_model],
outputs=voice_audio_output,
)
# Step 3: Generate Music (MusicGen Large)
with gr.Tab("Step 3: Generate Music"):
gr.Markdown("Generate a music track with the **MusicGen Large** model.")
audio_length = gr.Slider(
label="Music Length (tokens)",
minimum=128,
maximum=1024,
step=64,
value=512,
info="Increase tokens for longer audio, but be mindful of inference time."
)
generate_music_button = gr.Button("Generate Music")
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
generate_music_button.click(
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output],
)
# Step 4: Blend Audio (Loop/Trim + Ducking)
with gr.Tab("Step 4: Blend Audio"):
gr.Markdown("**Music** will be looped or trimmed to match **Voice** duration, then optionally ducked.")
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
duck_level_slider = gr.Slider(
label="Ducking Level (dB attenuation)",
minimum=0,
maximum=20,
step=1,
value=10
)
blend_button = gr.Button("Blend Voice + Music")
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
blend_button.click(
fn=blend_audio,
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
outputs=blended_output
)
# Footer
gr.Markdown("""
<hr>
<p style="text-align: center; font-size: 0.9em;">
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
</p>
""")
# Visitor Badge
gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
</a>
""")
demo.launch(debug=True)
|