Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,366 +13,313 @@ from pydub import AudioSegment
|
|
13 |
from dotenv import load_dotenv
|
14 |
import tempfile
|
15 |
import spaces
|
16 |
-
|
17 |
-
# Coqui TTS
|
18 |
from TTS.api import TTS
|
19 |
|
20 |
-
#
|
21 |
-
#
|
22 |
-
#
|
23 |
load_dotenv()
|
24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
return
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# ---------------------------------------------------------------------
|
88 |
-
@spaces.GPU(duration=100)
|
89 |
-
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
90 |
-
"""
|
91 |
-
Generates a script, sound design suggestions, and music ideas from a user prompt.
|
92 |
-
Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
|
93 |
-
"""
|
94 |
try:
|
95 |
-
text_pipeline = get_llama_pipeline(model_id,
|
96 |
-
|
97 |
-
system_prompt =
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
-
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
105 |
-
|
106 |
-
with torch.inference_mode():
|
107 |
-
result = text_pipeline(
|
108 |
-
combined_prompt,
|
109 |
-
max_new_tokens=300,
|
110 |
-
do_sample=True,
|
111 |
-
temperature=0.8
|
112 |
-
)
|
113 |
-
|
114 |
-
generated_text = result[0]["generated_text"]
|
115 |
-
if "Output:" in generated_text:
|
116 |
-
generated_text = generated_text.split("Output:")[-1].strip()
|
117 |
-
|
118 |
-
# Default placeholders
|
119 |
-
voice_script = "No voice-over script found."
|
120 |
-
sound_design = "No sound design suggestions found."
|
121 |
-
music_suggestions = "No music suggestions found."
|
122 |
-
|
123 |
-
# Voice-Over Script
|
124 |
-
if "Voice-Over Script:" in generated_text:
|
125 |
-
parts = generated_text.split("Voice-Over Script:")
|
126 |
-
voice_script_part = parts[1]
|
127 |
-
if "Sound Design Suggestions:" in voice_script_part:
|
128 |
-
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
129 |
-
else:
|
130 |
-
voice_script = voice_script_part.strip()
|
131 |
-
|
132 |
-
# Sound Design
|
133 |
-
if "Sound Design Suggestions:" in generated_text:
|
134 |
-
parts = generated_text.split("Sound Design Suggestions:")
|
135 |
-
sound_design_part = parts[1]
|
136 |
-
if "Music Suggestions:" in sound_design_part:
|
137 |
-
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
138 |
-
else:
|
139 |
-
sound_design = sound_design_part.strip()
|
140 |
-
|
141 |
-
# Music Suggestions
|
142 |
-
if "Music Suggestions:" in generated_text:
|
143 |
-
parts = generated_text.split("Music Suggestions:")
|
144 |
-
music_suggestions = parts[1].strip()
|
145 |
-
|
146 |
-
return voice_script, sound_design, music_suggestions
|
147 |
|
|
|
|
|
148 |
except Exception as e:
|
149 |
-
return f"Error
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
# ---------------------------------------------------------------------
|
153 |
-
# Voice-Over Generation Function
|
154 |
-
# ---------------------------------------------------------------------
|
155 |
@spaces.GPU(duration=100)
|
156 |
-
def generate_voice(script
|
157 |
-
"""
|
158 |
-
Generates a voice-over from the provided script using the Coqui TTS model.
|
159 |
-
Returns the file path to the generated .wav file.
|
160 |
-
"""
|
161 |
try:
|
162 |
if not script.strip():
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
170 |
return output_path
|
171 |
-
|
172 |
except Exception as e:
|
173 |
-
return f"Error
|
174 |
-
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
# ---------------------------------------------------------------------
|
179 |
-
@spaces.GPU(duration=100)
|
180 |
-
def generate_music(prompt: str, audio_length: int):
|
181 |
-
"""
|
182 |
-
Generates music from the 'facebook/musicgen-large' model based on the prompt.
|
183 |
-
Returns the file path to the generated .wav file.
|
184 |
-
"""
|
185 |
try:
|
186 |
-
|
187 |
-
return "Error: No music suggestion provided."
|
188 |
-
|
189 |
-
model_key = "facebook/musicgen-large"
|
190 |
-
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
191 |
-
|
192 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
203 |
|
|
|
|
|
204 |
return output_path
|
205 |
-
|
206 |
except Exception as e:
|
207 |
-
return f"Error
|
208 |
-
|
209 |
|
210 |
-
|
211 |
-
# Audio Blending with Duration Sync & Ducking
|
212 |
-
# ---------------------------------------------------------------------
|
213 |
-
@spaces.GPU(duration=100)
|
214 |
-
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
215 |
-
"""
|
216 |
-
Blends two audio files (voice and music).
|
217 |
-
1. If music < voice, loops the music until it meets/exceeds the voice duration.
|
218 |
-
2. If music > voice, trims music to the voice duration.
|
219 |
-
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
|
220 |
-
Returns the file path to the blended .wav file.
|
221 |
-
"""
|
222 |
try:
|
223 |
-
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
|
224 |
-
return "Error: Missing audio files for blending."
|
225 |
-
|
226 |
voice = AudioSegment.from_wav(voice_path)
|
227 |
music = AudioSegment.from_wav(music_path)
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
# Keep appending until we exceed voice length
|
236 |
-
while len(looped_music) < voice_len:
|
237 |
-
looped_music += music
|
238 |
-
music = looped_music
|
239 |
-
|
240 |
-
# 2) If the music is longer than the voice, truncate it:
|
241 |
-
if len(music) > voice_len:
|
242 |
-
music = music[:voice_len]
|
243 |
-
|
244 |
-
# Now music and voice are the same length
|
245 |
if ducking:
|
246 |
-
# Step 1: Reduce music dB while voice is playing
|
247 |
ducked_music = music - duck_level
|
248 |
-
|
249 |
-
final_audio = ducked_music.overlay(voice)
|
250 |
else:
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
final_audio.export(output_path, format="wav")
|
256 |
return output_path
|
257 |
-
|
258 |
except Exception as e:
|
259 |
-
return f"Error
|
260 |
-
|
261 |
|
262 |
-
#
|
263 |
# Gradio Interface
|
264 |
-
#
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
- **Voice Synthesis**: Convert text into natural-sounding voice-overs using Coqui TTS.
|
273 |
-
- **Music Production**: Generate custom music tracks with MusicGen Large for sound bed.
|
274 |
-
- **Seamless Blending**: Easily combine voice and musicβloop or trim tracks to match your desired promo length, with optional ducking to keep the voice front and center.
|
275 |
-
|
276 |
-
Whether youβre a radio producer, podcaster, or content creator, **AI Promo Studio** streamlines your entire production pipelineβcutting hours of manual editing down to a few clicks.
|
277 |
-
""")
|
278 |
-
|
279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
with gr.Tabs():
|
281 |
-
|
282 |
-
with gr.Tab("Step 1: Generate Script"):
|
283 |
with gr.Row():
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
with gr.Tab("Step 2: Generate Voice"):
|
315 |
-
gr.Markdown("Generate the voice-over using a Coqui TTS model.")
|
316 |
-
selected_tts_model = gr.Dropdown(
|
317 |
-
label="TTS Model",
|
318 |
-
choices=[
|
319 |
-
"tts_models/en/ljspeech/tacotron2-DDC",
|
320 |
-
"tts_models/en/ljspeech/vits",
|
321 |
-
"tts_models/en/sam/tacotron-DDC",
|
322 |
-
],
|
323 |
-
value="tts_models/en/ljspeech/tacotron2-DDC",
|
324 |
-
multiselect=False
|
325 |
-
)
|
326 |
-
generate_voice_button = gr.Button("Generate Voice-Over")
|
327 |
-
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
328 |
-
|
329 |
-
generate_voice_button.click(
|
330 |
-
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
331 |
-
inputs=[script_output, selected_tts_model],
|
332 |
-
outputs=voice_audio_output,
|
333 |
-
)
|
334 |
-
|
335 |
-
# Step 3: Generate Music (MusicGen Large)
|
336 |
-
with gr.Tab("Step 3: Generate Music"):
|
337 |
-
gr.Markdown("Generate a music track with the **MusicGen Large** model.")
|
338 |
-
audio_length = gr.Slider(
|
339 |
-
label="Music Length (tokens)",
|
340 |
-
minimum=128,
|
341 |
-
maximum=1024,
|
342 |
-
step=64,
|
343 |
-
value=512,
|
344 |
-
info="Increase tokens for longer audio, but be mindful of inference time."
|
345 |
-
)
|
346 |
-
generate_music_button = gr.Button("Generate Music")
|
347 |
-
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
348 |
-
|
349 |
-
generate_music_button.click(
|
350 |
-
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
351 |
-
inputs=[music_suggestion_output, audio_length],
|
352 |
-
outputs=[music_output],
|
353 |
)
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
-
# Footer
|
376 |
gr.Markdown("""
|
377 |
<hr>
|
378 |
<p style="text-align: center; font-size: 0.9em;">
|
@@ -380,11 +327,11 @@ Whether youβre a radio producer, podcaster, or content creator, **AI Promo Stu
|
|
380 |
</p>
|
381 |
""")
|
382 |
|
383 |
-
# Visitor Badge
|
384 |
gr.HTML("""
|
385 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
386 |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
|
387 |
</a>
|
388 |
""")
|
389 |
|
390 |
-
|
|
|
|
13 |
from dotenv import load_dotenv
|
14 |
import tempfile
|
15 |
import spaces
|
|
|
|
|
16 |
from TTS.api import TTS
|
17 |
|
18 |
+
# -------------------------------
|
19 |
+
# Configuration
|
20 |
+
# -------------------------------
|
21 |
load_dotenv()
|
22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
|
24 |
+
MODEL_CONFIG = {
|
25 |
+
"llama_models": {
|
26 |
+
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct",
|
27 |
+
"Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2",
|
28 |
+
"Phi-3-mini": "microsoft/Phi-3-mini-4k-instruct"
|
29 |
+
},
|
30 |
+
"tts_models": {
|
31 |
+
"Standard English": "tts_models/en/ljspeech/tacotron2-DDC",
|
32 |
+
"High Quality": "tts_models/en/ljspeech/vits",
|
33 |
+
"Fast Inference": "tts_models/en/sam/tacotron-DDC"
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
# -------------------------------
|
38 |
+
# Model Manager
|
39 |
+
# -------------------------------
|
40 |
+
class ModelManager:
|
41 |
+
def __init__(self):
|
42 |
+
self.llama_pipelines = {}
|
43 |
+
self.musicgen_models = {}
|
44 |
+
self.tts_models = {}
|
45 |
+
|
46 |
+
def get_llama_pipeline(self, model_id, token):
|
47 |
+
if model_id not in self.llama_pipelines:
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_id,
|
51 |
+
token=token,
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
device_map="auto",
|
54 |
+
attn_implementation="flash_attention_2"
|
55 |
+
)
|
56 |
+
self.llama_pipelines[model_id] = pipeline(
|
57 |
+
"text-generation",
|
58 |
+
model=model,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
device_map="auto"
|
61 |
+
)
|
62 |
+
return self.llama_pipelines[model_id]
|
63 |
+
|
64 |
+
def get_musicgen_model(self, model_key="facebook/musicgen-large"):
|
65 |
+
if model_key not in self.musicgen_models:
|
66 |
+
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
67 |
+
processor = AutoProcessor.from_pretrained(model_key)
|
68 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
69 |
+
model.to(device)
|
70 |
+
self.musicgen_models[model_key] = (model, processor)
|
71 |
+
return self.musicgen_models[model_key]
|
72 |
+
|
73 |
+
def get_tts_model(self, model_name):
|
74 |
+
if model_name not in self.tts_models:
|
75 |
+
self.tts_models[model_name] = TTS(model_name)
|
76 |
+
return self.tts_models[model_name]
|
77 |
+
|
78 |
+
model_manager = ModelManager()
|
79 |
+
|
80 |
+
# -------------------------------
|
81 |
+
# Core Functions
|
82 |
+
# -------------------------------
|
83 |
+
@spaces.GPU(duration=120)
|
84 |
+
def generate_script(user_prompt, model_id, duration, temperature=0.7, max_tokens=512):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
try:
|
86 |
+
text_pipeline = model_manager.get_llama_pipeline(model_id, HF_TOKEN)
|
87 |
+
|
88 |
+
system_prompt = f"""You are an AI audio production assistant. Create content for a {duration}-second promo:
|
89 |
+
1. Voice Script: [Clear, engaging narration]
|
90 |
+
2. Sound Design: [3-5 specific sound effects]
|
91 |
+
3. Music: [Genre, tempo, mood suggestions]
|
92 |
+
|
93 |
+
Keep sections concise and production-ready."""
|
94 |
+
|
95 |
+
messages = [
|
96 |
+
{"role": "system", "content": system_prompt},
|
97 |
+
{"role": "user", "content": user_prompt}
|
98 |
+
]
|
99 |
+
|
100 |
+
response = text_pipeline(
|
101 |
+
messages,
|
102 |
+
max_new_tokens=max_tokens,
|
103 |
+
temperature=temperature,
|
104 |
+
do_sample=True,
|
105 |
+
top_p=0.95,
|
106 |
+
eos_token_id=text_pipeline.tokenizer.eos_token_id
|
107 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
return parse_generated_content(response[0]['generated_text'][-1]['content'])
|
110 |
+
|
111 |
except Exception as e:
|
112 |
+
return f"Error: {str(e)}", "", ""
|
113 |
+
|
114 |
+
def parse_generated_content(text):
|
115 |
+
sections = {
|
116 |
+
"Voice Script": "",
|
117 |
+
"Sound Design": "",
|
118 |
+
"Music": ""
|
119 |
+
}
|
120 |
+
current_section = None
|
121 |
+
|
122 |
+
for line in text.split('\n'):
|
123 |
+
line = line.strip()
|
124 |
+
if "Voice Script:" in line:
|
125 |
+
current_section = "Voice Script"
|
126 |
+
line = line.replace("Voice Script:", "").strip()
|
127 |
+
elif "Sound Design:" in line:
|
128 |
+
current_section = "Sound Design"
|
129 |
+
line = line.replace("Sound Design:", "").strip()
|
130 |
+
elif "Music:" in line:
|
131 |
+
current_section = "Music"
|
132 |
+
line = line.replace("Music:", "").strip()
|
133 |
+
|
134 |
+
if current_section and line:
|
135 |
+
sections[current_section] += line + "\n"
|
136 |
+
|
137 |
+
return sections["Voice Script"].strip(), sections["Sound Design"].strip(), sections["Music"].strip()
|
138 |
|
|
|
|
|
|
|
139 |
@spaces.GPU(duration=100)
|
140 |
+
def generate_voice(script, tts_model, speed=1.0):
|
|
|
|
|
|
|
|
|
141 |
try:
|
142 |
if not script.strip():
|
143 |
+
raise ValueError("Empty script")
|
144 |
+
|
145 |
+
tts = model_manager.get_tts_model(tts_model)
|
146 |
+
output_path = os.path.join(tempfile.gettempdir(), "enhanced_voice.wav")
|
147 |
+
|
148 |
+
tts.tts_to_file(
|
149 |
+
text=script,
|
150 |
+
file_path=output_path,
|
151 |
+
speed=speed
|
152 |
+
)
|
153 |
return output_path
|
|
|
154 |
except Exception as e:
|
155 |
+
return f"Error: {str(e)}"
|
|
|
156 |
|
157 |
+
@spaces.GPU(duration=150)
|
158 |
+
def generate_music(prompt, duration_sec=30, temperature=1.0, guidance_scale=3.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
try:
|
160 |
+
model, processor = model_manager.get_musicgen_model()
|
|
|
|
|
|
|
|
|
|
|
161 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
162 |
+
|
163 |
+
inputs = processor(
|
164 |
+
text=[prompt],
|
165 |
+
padding=True,
|
166 |
+
return_tensors="pt",
|
167 |
+
).to(device)
|
168 |
+
|
169 |
+
audio_values = model.generate(
|
170 |
+
**inputs,
|
171 |
+
max_new_tokens=int(duration_sec * 50),
|
172 |
+
temperature=temperature,
|
173 |
+
guidance_scale=guidance_scale,
|
174 |
+
do_sample=True
|
175 |
+
)
|
176 |
|
177 |
+
output_path = os.path.join(tempfile.gettempdir(), "enhanced_music.wav")
|
178 |
+
write(output_path, 32000, audio_values[0, 0].cpu().numpy())
|
179 |
return output_path
|
|
|
180 |
except Exception as e:
|
181 |
+
return f"Error: {str(e)}"
|
|
|
182 |
|
183 |
+
def blend_audio(voice_path, music_path, ducking=True, duck_level=10, crossfade=500):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
try:
|
|
|
|
|
|
|
185 |
voice = AudioSegment.from_wav(voice_path)
|
186 |
music = AudioSegment.from_wav(music_path)
|
187 |
+
|
188 |
+
if len(music) < len(voice):
|
189 |
+
loops = (len(voice) // len(music)) + 1
|
190 |
+
music = music * loops
|
191 |
+
|
192 |
+
music = music[:len(voice)].fade_out(crossfade)
|
193 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
if ducking:
|
|
|
195 |
ducked_music = music - duck_level
|
196 |
+
mixed = ducked_music.overlay(voice.fade_in(crossfade))
|
|
|
197 |
else:
|
198 |
+
mixed = music.overlay(voice)
|
199 |
+
|
200 |
+
output_path = os.path.join(tempfile.gettempdir(), "enhanced_mix.wav")
|
201 |
+
mixed.export(output_path, format="wav")
|
|
|
202 |
return output_path
|
|
|
203 |
except Exception as e:
|
204 |
+
return f"Error: {str(e)}"
|
|
|
205 |
|
206 |
+
# -------------------------------
|
207 |
# Gradio Interface
|
208 |
+
# -------------------------------
|
209 |
+
theme = gr.themes.Soft(
|
210 |
+
primary_hue="blue",
|
211 |
+
secondary_hue="teal",
|
212 |
+
).set(
|
213 |
+
body_text_color_dark='#FFFFFF',
|
214 |
+
background_fill_primary_dark='#1F1F1F'
|
215 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
with gr.Blocks(theme=theme, title="AI Audio Studio Pro") as demo:
|
218 |
+
gr.Markdown("""
|
219 |
+
# ποΈ AI Audio Studio Pro
|
220 |
+
*Next-generation audio production powered by AI*
|
221 |
+
""")
|
222 |
+
|
223 |
with gr.Tabs():
|
224 |
+
with gr.Tab("π― Concept Development"):
|
|
|
225 |
with gr.Row():
|
226 |
+
with gr.Column(scale=2):
|
227 |
+
concept_input = gr.Textbox(
|
228 |
+
label="Your Concept",
|
229 |
+
placeholder="Describe your audio project...",
|
230 |
+
lines=3,
|
231 |
+
max_lines=6
|
232 |
+
)
|
233 |
+
with gr.Accordion("Advanced Settings", open=False):
|
234 |
+
with gr.Row():
|
235 |
+
model_selector = gr.Dropdown(
|
236 |
+
choices=list(MODEL_CONFIG["llama_models"].values()),
|
237 |
+
label="AI Model",
|
238 |
+
value=MODEL_CONFIG["llama_models"]["Meta-Llama-3-8B"]
|
239 |
+
)
|
240 |
+
duration_slider = gr.Slider(15, 120, value=30, step=15, label="Duration (seconds)")
|
241 |
+
with gr.Row():
|
242 |
+
temp_slider = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Creativity")
|
243 |
+
token_slider = gr.Slider(128, 1024, value=512, step=128, label="Max Length")
|
244 |
+
|
245 |
+
generate_btn = gr.Button("β¨ Generate Concept", variant="primary")
|
246 |
+
|
247 |
+
with gr.Column(scale=1):
|
248 |
+
script_output = gr.Textbox(label="Voice Script", interactive=True)
|
249 |
+
sound_output = gr.Textbox(label="Sound Design", interactive=True)
|
250 |
+
music_output = gr.Textbox(label="Music Suggestions", interactive=True)
|
251 |
+
|
252 |
+
generate_btn.click(
|
253 |
+
generate_script,
|
254 |
+
inputs=[concept_input, model_selector, duration_slider, temp_slider, token_slider],
|
255 |
+
outputs=[script_output, sound_output, music_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
)
|
257 |
|
258 |
+
with gr.Tab("π£οΈ Voice Production"):
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column():
|
261 |
+
tts_model = gr.Dropdown(
|
262 |
+
choices=list(MODEL_CONFIG["tts_models"].values()),
|
263 |
+
label="Voice Model",
|
264 |
+
value=MODEL_CONFIG["tts_models"]["Standard English"]
|
265 |
+
)
|
266 |
+
speed_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Speaking Rate")
|
267 |
+
voice_btn = gr.Button("ποΈ Generate Voiceover", variant="primary")
|
268 |
+
with gr.Column():
|
269 |
+
voice_preview = gr.Audio(label="Preview", interactive=False)
|
270 |
+
voice_btn.click(
|
271 |
+
generate_voice,
|
272 |
+
inputs=[script_output, tts_model, speed_slider],
|
273 |
+
outputs=voice_preview
|
274 |
+
)
|
275 |
+
|
276 |
+
with gr.Tab("πΆ Music Production"):
|
277 |
+
with gr.Row():
|
278 |
+
with gr.Column():
|
279 |
+
with gr.Accordion("Music Parameters", open=True):
|
280 |
+
music_duration = gr.Slider(10, 120, value=30, label="Duration (seconds)")
|
281 |
+
music_temp = gr.Slider(0.1, 2.0, value=1.0, label="Creativity")
|
282 |
+
guidance_scale = gr.Slider(1.0, 5.0, value=3.0, label="Focus")
|
283 |
+
music_btn = gr.Button("π΅ Generate Music", variant="primary")
|
284 |
+
with gr.Column():
|
285 |
+
music_preview = gr.Audio(label="Preview", interactive=False)
|
286 |
+
music_btn.click(
|
287 |
+
generate_music,
|
288 |
+
inputs=[music_output, music_duration, music_temp, guidance_scale],
|
289 |
+
outputs=music_preview
|
290 |
+
)
|
291 |
+
|
292 |
+
with gr.Tab("π Final Mix"):
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
ducking_toggle = gr.Checkbox(value=True, label="Enable Voice Ducking")
|
296 |
+
duck_level = gr.Slider(0, 30, value=12, label="Ducking Strength (dB)")
|
297 |
+
crossfade_time = gr.Slider(0, 2000, value=500, label="Crossfade (ms)")
|
298 |
+
mix_btn = gr.Button("π Create Final Mix", variant="primary")
|
299 |
+
with gr.Column():
|
300 |
+
final_mix = gr.Audio(label="Master Output", interactive=False)
|
301 |
+
mix_btn.click(
|
302 |
+
blend_audio,
|
303 |
+
inputs=[voice_preview, music_preview, ducking_toggle, duck_level, crossfade_time],
|
304 |
+
outputs=final_mix
|
305 |
+
)
|
306 |
+
|
307 |
+
with gr.Accordion("π Example Prompts", open=False):
|
308 |
+
gr.Examples(
|
309 |
+
examples=[
|
310 |
+
["A 30-second tech podcast intro with futuristic sounds"],
|
311 |
+
["A 15-second radio ad for a coffee shop with morning vibes"],
|
312 |
+
["A 60-second documentary trailer with epic orchestral music"]
|
313 |
+
],
|
314 |
+
inputs=concept_input
|
315 |
+
)
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
gr.Markdown("### System Resources")
|
319 |
+
gpu_status = gr.Textbox(label="GPU Utilization", interactive=False)
|
320 |
+
ram_status = gr.Textbox(label="RAM Usage", interactive=False)
|
321 |
|
322 |
+
# Custom Footer
|
323 |
gr.Markdown("""
|
324 |
<hr>
|
325 |
<p style="text-align: center; font-size: 0.9em;">
|
|
|
327 |
</p>
|
328 |
""")
|
329 |
|
|
|
330 |
gr.HTML("""
|
331 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
332 |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
|
333 |
</a>
|
334 |
""")
|
335 |
|
336 |
+
if __name__ == "__main__":
|
337 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|