Bils commited on
Commit
ab6cd42
·
verified ·
1 Parent(s): 3108d3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +262 -333
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import gradio as gr
2
  import os
3
  import torch
 
 
4
  from transformers import (
5
  AutoTokenizer,
6
  AutoModelForCausalLM,
@@ -13,378 +15,305 @@ from pydub import AudioSegment
13
  from dotenv import load_dotenv
14
  import tempfile
15
  import spaces
16
-
17
- # Coqui TTS
18
  from TTS.api import TTS
 
 
19
 
20
- # ---------------------------------------------------------------------
21
- # Load Environment Variables
22
- # ---------------------------------------------------------------------
23
  load_dotenv()
24
- HF_TOKEN = os.getenv("HF_TOKEN")
25
-
26
- # ---------------------------------------------------------------------
27
- # Global Model Caches
28
- # ---------------------------------------------------------------------
29
- LLAMA_PIPELINES = {}
30
- MUSICGEN_MODELS = {}
31
- TTS_MODELS = {}
32
-
33
- # ---------------------------------------------------------------------
34
- # Helper Functions
35
- # ---------------------------------------------------------------------
36
- def get_llama_pipeline(model_id: str, token: str):
37
- """
38
- Returns a cached LLaMA pipeline if available; otherwise, loads it.
39
- """
40
- if model_id in LLAMA_PIPELINES:
41
- return LLAMA_PIPELINES[model_id]
42
-
43
- tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
44
- model = AutoModelForCausalLM.from_pretrained(
45
- model_id,
46
- use_auth_token=token,
47
- torch_dtype=torch.float16,
48
- device_map="auto",
49
- trust_remote_code=True,
50
- )
51
- text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
52
- LLAMA_PIPELINES[model_id] = text_pipeline
53
- return text_pipeline
54
-
55
-
56
- def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
57
- """
58
- Returns a cached MusicGen model if available; otherwise, loads it.
59
- Uses the 'large' variant for higher quality outputs.
60
- """
61
- if model_key in MUSICGEN_MODELS:
62
- return MUSICGEN_MODELS[model_key]
63
-
64
- model = MusicgenForConditionalGeneration.from_pretrained(model_key)
65
- processor = AutoProcessor.from_pretrained(model_key)
66
-
67
- device = "cuda" if torch.cuda.is_available() else "cpu"
68
- model.to(device)
69
- MUSICGEN_MODELS[model_key] = (model, processor)
70
- return model, processor
71
-
72
 
73
- def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
74
- """
75
- Returns a cached TTS model if available; otherwise, loads it.
76
- """
77
- if model_name in TTS_MODELS:
78
- return TTS_MODELS[model_name]
 
79
 
80
- tts_model = TTS(model_name)
81
- TTS_MODELS[model_name] = tts_model
82
- return tts_model
 
83
 
 
84
 
85
- # ---------------------------------------------------------------------
86
- # Script Generation Function
87
- # ---------------------------------------------------------------------
88
- @spaces.GPU(duration=100)
89
- def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
90
- """
91
- Generates a script, sound design suggestions, and music ideas from a user prompt.
92
- Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
93
- """
94
  try:
95
- text_pipeline = get_llama_pipeline(model_id, token)
96
-
97
- system_prompt = (
98
- "You are an expert radio imaging producer specializing in sound design and music. "
99
- f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
100
- "1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
101
- "2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
102
- "3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
 
 
 
 
 
 
 
 
 
 
 
 
103
  )
104
- combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
105
-
106
- with torch.inference_mode():
107
- result = text_pipeline(
108
- combined_prompt,
109
- max_new_tokens=300,
110
- do_sample=True,
111
- temperature=0.8
112
- )
113
-
114
- generated_text = result[0]["generated_text"]
115
- if "Output:" in generated_text:
116
- generated_text = generated_text.split("Output:")[-1].strip()
117
-
118
- # Default placeholders
119
- voice_script = "No voice-over script found."
120
- sound_design = "No sound design suggestions found."
121
- music_suggestions = "No music suggestions found."
122
-
123
- # Voice-Over Script
124
- if "Voice-Over Script:" in generated_text:
125
- parts = generated_text.split("Voice-Over Script:")
126
- voice_script_part = parts[1]
127
- if "Sound Design Suggestions:" in voice_script_part:
128
- voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
129
- else:
130
- voice_script = voice_script_part.strip()
131
-
132
- # Sound Design
133
- if "Sound Design Suggestions:" in generated_text:
134
- parts = generated_text.split("Sound Design Suggestions:")
135
- sound_design_part = parts[1]
136
- if "Music Suggestions:" in sound_design_part:
137
- sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
138
- else:
139
- sound_design = sound_design_part.strip()
140
-
141
- # Music Suggestions
142
- if "Music Suggestions:" in generated_text:
143
- parts = generated_text.split("Music Suggestions:")
144
- music_suggestions = parts[1].strip()
145
-
146
- return voice_script, sound_design, music_suggestions
147
 
 
 
148
  except Exception as e:
149
- return f"Error generating script: {e}", "", ""
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
- # ---------------------------------------------------------------------
153
- # Voice-Over Generation Function
154
- # ---------------------------------------------------------------------
155
- @spaces.GPU(duration=100)
156
- def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
157
- """
158
- Generates a voice-over from the provided script using the Coqui TTS model.
159
- Returns the file path to the generated .wav file.
160
- """
161
  try:
 
162
  if not script.strip():
163
- return "Error: No script provided."
164
-
165
- tts_model = get_tts_model(tts_model_name)
166
-
167
- # Generate and save voice
168
- output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
169
- tts_model.tts_to_file(text=script, file_path=output_path)
170
- return output_path
171
-
172
  except Exception as e:
173
- return f"Error generating voice: {e}"
174
-
175
 
176
- # ---------------------------------------------------------------------
177
- # Music Generation Function
178
- # ---------------------------------------------------------------------
179
- @spaces.GPU(duration=100)
180
- def generate_music(prompt: str, audio_length: int):
181
- """
182
- Generates music from the 'facebook/musicgen-large' model based on the prompt.
183
- Returns the file path to the generated .wav file.
184
- """
185
  try:
186
- if not prompt.strip():
187
- return "Error: No music suggestion provided."
188
-
189
- model_key = "facebook/musicgen-large"
190
- musicgen_model, musicgen_processor = get_musicgen_model(model_key)
191
-
192
- device = "cuda" if torch.cuda.is_available() else "cpu"
193
- inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
194
-
195
- with torch.inference_mode():
196
- outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
197
-
198
- audio_data = outputs[0, 0].cpu().numpy()
199
- normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
200
-
201
- output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav"
202
- write(output_path, 44100, normalized_audio)
203
-
204
- return output_path
205
-
206
  except Exception as e:
207
- return f"Error generating music: {e}"
208
 
209
-
210
- # ---------------------------------------------------------------------
211
- # Audio Blending with Duration Sync & Ducking
212
- # ---------------------------------------------------------------------
213
- @spaces.GPU(duration=100)
214
- def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
215
- """
216
- Blends two audio files (voice and music).
217
- 1. If music < voice, loops the music until it meets/exceeds the voice duration.
218
- 2. If music > voice, trims music to the voice duration.
219
- 3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
220
- Returns the file path to the blended .wav file.
221
- """
222
  try:
223
- if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
224
- return "Error: Missing audio files for blending."
225
-
226
  voice = AudioSegment.from_wav(voice_path)
227
  music = AudioSegment.from_wav(music_path)
228
 
229
- voice_len = len(voice) # in milliseconds
230
- music_len = len(music) # in milliseconds
231
-
232
- # 1) If the music is shorter than the voice, loop it:
233
- if music_len < voice_len:
234
- looped_music = AudioSegment.empty()
235
- # Keep appending until we exceed voice length
236
- while len(looped_music) < voice_len:
237
- looped_music += music
238
- music = looped_music
239
-
240
- # 2) If the music is longer than the voice, truncate it:
241
- if len(music) > voice_len:
242
- music = music[:voice_len]
243
 
244
- # Now music and voice are the same length
245
  if ducking:
246
- # Step 1: Reduce music dB while voice is playing
247
- ducked_music = music - duck_level
248
- # Step 2: Overlay voice on top of ducked music
249
- final_audio = ducked_music.overlay(voice)
250
- else:
251
- # No ducking, just overlay
252
- final_audio = music.overlay(voice)
253
-
254
- output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
255
- final_audio.export(output_path, format="wav")
256
- return output_path
257
 
 
 
 
 
258
  except Exception as e:
259
- return f"Error blending audio: {e}"
260
-
261
-
262
- # ---------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
  # Gradio Interface
264
- # ---------------------------------------------------------------------
265
- with gr.Blocks() as demo:
266
- gr.Markdown("""
267
- # 🎧 AI Promo Studio
268
- Welcome to **AI Promo Studio**, your all-in-one solution for creating professional, engaging audio promos with minimal effort!
269
-
270
- This next-generation platform uses powerful AI models to handle:
271
- - **Script Generation**: Craft concise and impactful copy with LLaMA.
272
- - **Voice Synthesis**: Convert text into natural-sounding voice-overs using Coqui TTS.
273
- - **Music Production**: Generate custom music tracks with MusicGen Large for sound bed.
274
- - **Seamless Blending**: Easily combine voice and music—loop or trim tracks to match your desired promo length, with optional ducking to keep the voice front and center.
275
-
276
- Whether you’re a radio producer, podcaster, or content creator, **AI Promo Studio** streamlines your entire production pipeline—cutting hours of manual editing down to a few clicks.
277
- """)
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279
 
280
  with gr.Tabs():
281
- # Step 1: Generate Script
282
- with gr.Tab("Step 1: Generate Script"):
283
  with gr.Row():
284
- user_prompt = gr.Textbox(
285
- label="Promo Idea",
286
- placeholder="E.g., A 30-second promo for a morning show...",
287
- lines=2
288
- )
289
- llama_model_id = gr.Textbox(
290
- label="LLaMA Model ID",
291
- value="meta-llama/Meta-Llama-3-8B-Instruct",
292
- placeholder="Enter a valid Hugging Face model ID"
293
  )
294
- duration = gr.Slider(
295
- label="Desired Promo Duration (seconds)",
296
- minimum=15,
297
- maximum=60,
298
- step=15,
299
- value=30
300
- )
301
-
302
- generate_script_button = gr.Button("Generate Script")
303
- script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
304
- sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
305
- music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
306
-
307
- generate_script_button.click(
308
- fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
309
- inputs=[user_prompt, llama_model_id, duration],
310
- outputs=[script_output, sound_design_output, music_suggestion_output],
311
- )
312
-
313
- # Step 2: Generate Voice
314
- with gr.Tab("Step 2: Generate Voice"):
315
- gr.Markdown("Generate the voice-over using a Coqui TTS model.")
316
- selected_tts_model = gr.Dropdown(
317
- label="TTS Model",
318
- choices=[
319
- "tts_models/en/ljspeech/tacotron2-DDC",
320
- "tts_models/en/ljspeech/vits",
321
- "tts_models/en/sam/tacotron-DDC",
322
- ],
323
- value="tts_models/en/ljspeech/tacotron2-DDC",
324
- multiselect=False
325
- )
326
- generate_voice_button = gr.Button("Generate Voice-Over")
327
- voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
328
-
329
- generate_voice_button.click(
330
- fn=lambda script, tts_model: generate_voice(script, tts_model),
331
- inputs=[script_output, selected_tts_model],
332
- outputs=voice_audio_output,
333
- )
334
 
335
- # Step 3: Generate Music (MusicGen Large)
336
- with gr.Tab("Step 3: Generate Music"):
337
- gr.Markdown("Generate a music track with the **MusicGen Large** model.")
338
- audio_length = gr.Slider(
339
- label="Music Length (tokens)",
340
- minimum=128,
341
- maximum=1024,
342
- step=64,
343
- value=512,
344
- info="Increase tokens for longer audio, but be mindful of inference time."
345
- )
346
- generate_music_button = gr.Button("Generate Music")
347
- music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
348
 
349
- generate_music_button.click(
350
- fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
351
- inputs=[music_suggestion_output, audio_length],
352
- outputs=[music_output],
353
- )
 
 
 
354
 
355
- # Step 4: Blend Audio (Loop/Trim + Ducking)
356
- with gr.Tab("Step 4: Blend Audio"):
357
- gr.Markdown("**Music** will be looped or trimmed to match **Voice** duration, then optionally ducked.")
358
- ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
359
- duck_level_slider = gr.Slider(
360
- label="Ducking Level (dB attenuation)",
361
- minimum=0,
362
- maximum=20,
363
- step=1,
364
- value=10
365
- )
366
- blend_button = gr.Button("Blend Voice + Music")
367
- blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
368
 
369
- blend_button.click(
370
- fn=blend_audio,
371
- inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
372
- outputs=blended_output
373
- )
374
-
375
- # Footer
376
  gr.Markdown("""
377
- <hr>
378
- <p style="text-align: center; font-size: 0.9em;">
379
- Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
380
- </p>
381
  """)
 
 
 
 
 
 
 
382
 
383
- # Visitor Badge
384
- gr.HTML("""
385
- <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
386
- <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
387
- </a>
388
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389
 
390
- demo.launch(debug=True)
 
 
1
  import gradio as gr
2
  import os
3
  import torch
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
  from transformers import (
7
  AutoTokenizer,
8
  AutoModelForCausalLM,
 
15
  from dotenv import load_dotenv
16
  import tempfile
17
  import spaces
 
 
18
  from TTS.api import TTS
19
+ import psutil
20
+ import GPUtil
21
 
22
+ # -------------------------------
23
+ # Configuration
24
+ # -------------------------------
25
  load_dotenv()
26
+ HF_TOKEN = os.getenv("HF_TOKEN", os.getenv("HF_TOKEN_SECRET"))
27
+
28
+ MODEL_CONFIG = {
29
+ "llama_models": {
30
+ "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct",
31
+ "Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2",
32
+ },
33
+ "tts_models": {
34
+ "Standard English": "tts_models/en/ljspeech/tacotron2-DDC",
35
+ "High Quality": "tts_models/en/ljspeech/vits"
36
+ },
37
+ "musicgen_model": "facebook/musicgen-medium"
38
+ }
39
+
40
+ # -------------------------------
41
+ # Model Manager with Cache
42
+ # -------------------------------
43
+ class ModelManager:
44
+ def __init__(self):
45
+ self.llama_pipelines = {}
46
+ self.musicgen_model = None
47
+ self.tts_models = {}
48
+
49
+ def get_llama_pipeline(self, model_id, token):
50
+ if model_id not in self.llama_pipelines:
51
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
52
+ model = AutoModelForCausalLM.from_pretrained(
53
+ model_id,
54
+ use_auth_token=token,
55
+ torch_dtype=torch.float16,
56
+ device_map="auto"
57
+ )
58
+ self.llama_pipelines[model_id] = pipeline(
59
+ "text-generation",
60
+ model=model,
61
+ tokenizer=tokenizer,
62
+ device_map="auto"
63
+ )
64
+ return self.llama_pipelines[model_id]
 
 
 
 
 
 
 
 
 
65
 
66
+ def get_musicgen_model(self):
67
+ if not self.musicgen_model:
68
+ self.musicgen_model = MusicgenForConditionalGeneration.from_pretrained(
69
+ MODEL_CONFIG["musicgen_model"]
70
+ )
71
+ self.musicgen_model.to("cuda" if torch.cuda.is_available() else "cpu")
72
+ return self.musicgen_model
73
 
74
+ def get_tts_model(self, model_name):
75
+ if model_name not in self.tts_models:
76
+ self.tts_models[model_name] = TTS(model_name)
77
+ return self.tts_models[model_name]
78
 
79
+ model_manager = ModelManager()
80
 
81
+ # -------------------------------
82
+ # Core Functions with Enhanced Error Handling
83
+ # -------------------------------
84
+ @spaces.GPU
85
+ def generate_script(user_prompt, model_id, duration, progress=gr.Progress()):
 
 
 
 
86
  try:
87
+ progress(0.1, "Initializing script generation...")
88
+ text_pipeline = model_manager.get_llama_pipeline(model_id, HF_TOKEN)
89
+
90
+ system_prompt = f"""Generate a {duration}-second radio promo with:
91
+ 1. Voice Script: [Clear narration, 25-35 words]
92
+ 2. Sound Design: [3-5 specific sound effects]
93
+ 3. Music: [Genre, tempo, mood]
94
+
95
+ Format strictly as:
96
+ Voice Script: [content]
97
+ Sound Design: [effects]
98
+ Music: [description]"""
99
+
100
+ progress(0.3, "Generating content...")
101
+ response = text_pipeline(
102
+ f"{system_prompt}\nConcept: {user_prompt}",
103
+ max_new_tokens=300,
104
+ temperature=0.7,
105
+ do_sample=True,
106
+ top_p=0.95
107
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ progress(0.8, "Parsing results...")
110
+ return parse_generated_content(response[0]["generated_text"])
111
  except Exception as e:
112
+ return [f"Error: {str(e)}"] * 3
113
 
114
+ def parse_generated_content(text):
115
+ sections = {"Voice Script": "", "Sound Design": "", "Music": ""}
116
+ current_section = None
117
+
118
+ for line in text.split('\n'):
119
+ line = line.strip()
120
+ for section in sections:
121
+ if line.startswith(section + ":"):
122
+ current_section = section
123
+ line = line.replace(section + ":", "").strip()
124
+ break
125
+ if current_section and line:
126
+ sections[current_section] += line + "\n"
127
+
128
+ return [sections[section].strip() for section in sections]
129
 
130
+ @spaces.GPU
131
+ def generate_voice(script, tts_model, speed=1.0, progress=gr.Progress()):
 
 
 
 
 
 
 
132
  try:
133
+ progress(0.2, "Initializing TTS...")
134
  if not script.strip():
135
+ return None, "No script provided"
136
+
137
+ tts = model_manager.get_tts_model(tts_model)
138
+ output_path = os.path.join(tempfile.gettempdir(), "voice.wav")
139
+
140
+ progress(0.5, "Generating audio...")
141
+ tts.tts_to_file(text=script, file_path=output_path, speed=speed)
142
+
143
+ return output_path, None
144
  except Exception as e:
145
+ return None, f"Voice Error: {str(e)}"
 
146
 
147
+ @spaces.GPU
148
+ def generate_music(prompt, duration_sec=30, progress=gr.Progress()):
 
 
 
 
 
 
 
149
  try:
150
+ progress(0.1, "Initializing MusicGen...")
151
+ model = model_manager.get_musicgen_model()
152
+ processor = AutoProcessor.from_pretrained(MODEL_CONFIG["musicgen_model"])
153
+
154
+ progress(0.4, "Processing input...")
155
+ inputs = processor(text=[prompt], padding=True, return_tensors="pt").to(model.device)
156
+
157
+ progress(0.6, "Generating music...")
158
+ audio_values = model.generate(**inputs, max_new_tokens=int(duration_sec * 50))
159
+
160
+ output_path = os.path.join(tempfile.gettempdir(), "music.wav")
161
+ write(output_path, 32000, audio_values[0, 0].cpu().numpy())
162
+ return output_path, None
 
 
 
 
 
 
 
163
  except Exception as e:
164
+ return None, f"Music Error: {str(e)}"
165
 
166
+ def blend_audio(voice_path, music_path, ducking=True, progress=gr.Progress()):
 
 
 
 
 
 
 
 
 
 
 
 
167
  try:
168
+ progress(0.2, "Loading audio files...")
 
 
169
  voice = AudioSegment.from_wav(voice_path)
170
  music = AudioSegment.from_wav(music_path)
171
 
172
+ progress(0.4, "Aligning durations...")
173
+ if len(music) < len(voice):
174
+ music = music * (len(voice) // len(music) + 1)
175
+ music = music[:len(voice)]
 
 
 
 
 
 
 
 
 
 
176
 
177
+ progress(0.6, "Mixing audio...")
178
  if ducking:
179
+ music = music - 10 # 10dB ducking
 
 
 
 
 
 
 
 
 
 
180
 
181
+ mixed = music.overlay(voice)
182
+ output_path = os.path.join(tempfile.gettempdir(), "final_mix.wav")
183
+ mixed.export(output_path, format="wav")
184
+ return output_path, None
185
  except Exception as e:
186
+ return None, f"Mixing Error: {str(e)}"
187
+
188
+ # -------------------------------
189
+ # UI Components
190
+ # -------------------------------
191
+ def create_audio_visualization(audio_path):
192
+ if not audio_path:
193
+ return None
194
+ audio = AudioSegment.from_file(audio_path)
195
+ samples = np.array(audio.get_array_of_samples())
196
+
197
+ plt.figure(figsize=(10, 3))
198
+ plt.plot(samples)
199
+ plt.axis('off')
200
+ plt.tight_layout()
201
+
202
+ temp_file = os.path.join(tempfile.gettempdir(), "waveform.png")
203
+ plt.savefig(temp_file, bbox_inches='tight', pad_inches=0)
204
+ plt.close()
205
+ return temp_file
206
+
207
+ def system_monitor():
208
+ gpus = GPUtil.getGPUs()
209
+ return {
210
+ "CPU": f"{psutil.cpu_percent()}%",
211
+ "RAM": f"{psutil.virtual_memory().percent}%",
212
+ "GPU": f"{gpus[0].load*100 if gpus else 0:.1f}%" if gpus else "N/A"
213
+ }
214
+
215
+ # -------------------------------
216
  # Gradio Interface
217
+ # -------------------------------
218
+ theme = gr.themes.Soft(
219
+ primary_hue="blue",
220
+ secondary_hue="teal",
221
+ ).set(
222
+ body_text_color_dark='#FFFFFF',
223
+ background_fill_primary_dark='#1F1F1F'
224
+ )
 
 
 
 
 
 
225
 
226
+ with gr.Blocks(theme=theme, title="AI Radio Studio Pro") as demo:
227
+ gr.Markdown("# 🎙️ AI Radio Studio Pro")
228
+
229
+ with gr.Row():
230
+ with gr.Column(scale=3):
231
+ concept_input = gr.Textbox(
232
+ label="Concept Description",
233
+ placeholder="Describe your radio segment...",
234
+ lines=3
235
+ )
236
+ with gr.Accordion("Advanced Settings", open=False):
237
+ model_selector = gr.Dropdown(
238
+ list(MODEL_CONFIG["llama_models"].values()),
239
+ label="AI Model",
240
+ value=next(iter(MODEL_CONFIG["llama_models"].values()))
241
+ )
242
+ duration_selector = gr.Slider(15, 120, 30, step=15, label="Duration (seconds)")
243
+
244
+ generate_btn = gr.Button("Generate Script", variant="primary")
245
+
246
+ with gr.Column(scale=2):
247
+ script_output = gr.Textbox(label="Voice Script", interactive=True)
248
+ sound_output = gr.Textbox(label="Sound Design", interactive=True)
249
+ music_output = gr.Textbox(label="Music Style", interactive=True)
250
 
251
  with gr.Tabs():
252
+ with gr.Tab("🎤 Voice Production"):
 
253
  with gr.Row():
254
+ tts_selector = gr.Dropdown(
255
+ list(MODEL_CONFIG["tts_models"].values()),
256
+ label="Voice Model",
257
+ value=next(iter(MODEL_CONFIG["tts_models"].values()))
 
 
 
 
 
258
  )
259
+ speed_selector = gr.Slider(0.5, 2.0, 1.0, step=0.1, label="Speaking Rate")
260
+ voice_btn = gr.Button("Generate Voiceover", variant="primary")
261
+ with gr.Row():
262
+ voice_audio = gr.Audio(label="Voice Preview", interactive=False)
263
+ voice_viz = gr.Image(label="Waveform", interactive=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
 
265
+ with gr.Tab("🎵 Music Production"):
266
+ music_btn = gr.Button("Generate Music Track", variant="primary")
267
+ with gr.Row():
268
+ music_audio = gr.Audio(label="Music Preview", interactive=False)
269
+ music_viz = gr.Image(label="Waveform", interactive=False)
 
 
 
 
 
 
 
 
270
 
271
+ with gr.Tab("🔉 Final Mix"):
272
+ mix_btn = gr.Button("Create Final Mix", variant="primary")
273
+ with gr.Row():
274
+ final_mix_audio = gr.Audio(label="Final Mix", interactive=False)
275
+ final_mix_viz = gr.Image(label="Waveform", interactive=False)
276
+ with gr.Row():
277
+ download_btn = gr.Button("Download Mix")
278
+ play_btn = gr.Button("▶️ Play in Browser")
279
 
280
+ with gr.Accordion("📊 System Monitor", open=False):
281
+ monitor = gr.JSON(label="Resource Usage", value=lambda: system_monitor(), every=5)
 
 
 
 
 
 
 
 
 
 
 
282
 
 
 
 
 
 
 
 
283
  gr.Markdown("""
284
+ <div style="text-align: center; padding: 20px; border-top: 1px solid #444;">
285
+ <p>Created with ❤️ by <a href="https://bilsimaging.com">Bils Imaging</a></p>
286
+ <img src="https://api.visitorbadge.io/api/visitors?path=https://huggingface.co/spaces/Bils/radiogold&countColor=%23263759">
287
+ </div>
288
  """)
289
+
290
+ # Event Handling
291
+ generate_btn.click(
292
+ generate_script,
293
+ [concept_input, model_selector, duration_selector],
294
+ [script_output, sound_output, music_output]
295
+ )
296
 
297
+ voice_btn.click(
298
+ generate_voice,
299
+ [script_output, tts_selector, speed_selector],
300
+ [voice_audio, voice_viz],
301
+ preprocess=create_audio_visualization
302
+ )
303
+
304
+ music_btn.click(
305
+ generate_music,
306
+ [music_output],
307
+ [music_audio, music_viz],
308
+ preprocess=create_audio_visualization
309
+ )
310
+
311
+ mix_btn.click(
312
+ blend_audio,
313
+ [voice_audio, music_audio],
314
+ [final_mix_audio, final_mix_viz],
315
+ preprocess=create_audio_visualization
316
+ )
317
 
318
+ if __name__ == "__main__":
319
+ demo.launch(server_name="0.0.0.0", server_port=7860)