File size: 19,225 Bytes
6ca0d72 7eaaff0 ad52429 6ca0d72 ad52429 6ca0d72 25f2b88 7eaaff0 6ca0d72 256b1d4 25f2b88 6fc3054 41365d5 6ca0d72 7eaaff0 6ca0d72 ad52429 7eaaff0 6ca0d72 7eaaff0 6ca0d72 7eaaff0 ad52429 7eaaff0 6ca0d72 7eaaff0 6ca0d72 7eaaff0 25f2b88 6ca0d72 25f2b88 7eaaff0 6ca0d72 7eaaff0 6ca0d72 7b9d8b2 6ca0d72 7b9d8b2 6ca0d72 25f2b88 7eaaff0 1bb7d9d 7eaaff0 1bb7d9d 7eaaff0 1bb7d9d 7eaaff0 6ca0d72 ad52429 7eaaff0 6ca0d72 5f61427 6ca0d72 53f5f55 ad52429 7eaaff0 ad52429 25f2b88 6ca0d72 ad52429 6ca0d72 ad52429 6ca0d72 ad52429 6ca0d72 3fe982e ad52429 0fc43d5 3fe982e 25f2b88 6ca0d72 154774e ad52429 3fe982e ad52429 6ca0d72 ad52429 7b9d8b2 6ca0d72 7b9d8b2 ad52429 7b9d8b2 6ca0d72 7b9d8b2 ad52429 6ca0d72 7b9d8b2 7eaaff0 6ca0d72 7b9d8b2 6ca0d72 7b9d8b2 6ca0d72 7b9d8b2 6ca0d72 25f2b88 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 6ca0d72 7b9d8b2 6ca0d72 444f8bc 99608c9 33fd63d 9a1a827 33fd63d ad52429 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 6ca0d72 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 444f8bc 6ca0d72 33fd63d 5f61427 444f8bc 33fd63d 444f8bc 6ca0d72 33fd63d 6ca0d72 33fd63d 444f8bc 33fd63d 444f8bc 6ca0d72 33fd63d 1bb7d9d 6ca0d72 ad52429 7eaaff0 ad52429 6ca0d72 7eaaff0 6ca0d72 7eaaff0 6ca0d72 7eaaff0 6ca0d72 7eaaff0 6ca0d72 ad52429 7eaaff0 6ca0d72 ad52429 7eaaff0 6ca0d72 7eaaff0 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6ca0d72 41365d5 6fc3054 6ca0d72 1419b33 ad52429 6ca0d72 5f61427 050caf8 5f61427 6ca0d72 5f61427 6ca0d72 5f61427 6ca0d72 5f61427 e3d20ad 5f61427 6ca0d72 7eaaff0 6ca0d72 d946b22 6ca0d72 967f5dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# AI Text Detector Code Analysis
# IMPORTS AND CONFIGURATION
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification # HuggingFace transformers for NLP models
import torch.nn.functional as F
import spacy # Used for sentence splitting
from typing import List, Dict, Tuple
import logging
import os
import gradio as gr # Used for creating the web UI
from fastapi.middleware.cors import CORSMiddleware
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import time
from datetime import datetime
# Basic logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# GLOBAL PARAMETERS
MAX_LENGTH = 512 # Maximum token length for the model input
MODEL_NAME = "microsoft/deberta-v3-small" # Using Microsoft's DeBERTa v3 small model as the base
WINDOW_SIZE = 6 # Number of sentences in each analysis window
WINDOW_OVERLAP = 2 # Number of sentences that overlap between adjacent windows
CONFIDENCE_THRESHOLD = 0.65 # Threshold for highlighting predictions with stronger colors
BATCH_SIZE = 8 # Number of windows to process in a single batch for efficiency
MAX_WORKERS = 4 # Maximum number of worker threads for parallel processing
# TEXT WINDOW PROCESSOR
# This class handles sentence splitting and window creation for text analysis
class TextWindowProcessor:
def __init__(self):
# Initialize SpaCy with minimal pipeline for sentence splitting
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
# Auto-download SpaCy model if not available
logger.info("Downloading spacy model...")
spacy.cli.download("en_core_web_sm")
self.nlp = spacy.load("en_core_web_sm")
# Add sentencizer if not already present
if 'sentencizer' not in self.nlp.pipe_names:
self.nlp.add_pipe('sentencizer')
# Disable unnecessary components for better performance
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
self.nlp.disable_pipes(*disabled_pipes)
# Setup ThreadPoolExecutor for parallel processing
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
# Split text into individual sentences using SpaCy
def split_into_sentences(self, text: str) -> List[str]:
doc = self.nlp(text)
return [str(sent).strip() for sent in doc.sents]
# Create overlapping windows of fixed size (for quick scan)
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
if len(sentences) < window_size:
return [" ".join(sentences)] # Return single window if not enough sentences
windows = []
stride = window_size - overlap
for i in range(0, len(sentences) - window_size + 1, stride):
window = sentences[i:i + window_size]
windows.append(" ".join(window))
return windows
# Create windows centered around each sentence (for detailed scan)
# This provides better analysis of individual sentences with proper context
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
windows = []
window_sentence_indices = []
for i in range(len(sentences)):
half_window = window_size // 2
start_idx = max(0, i - half_window)
end_idx = min(len(sentences), i + half_window + 1)
window = sentences[start_idx:end_idx]
windows.append(" ".join(window))
window_sentence_indices.append(list(range(start_idx, end_idx)))
return windows, window_sentence_indices
# TEXT CLASSIFIER
# This class handles the actual AI/Human classification using a pre-trained model
class TextClassifier:
def __init__(self):
# Configure CPU threading if CUDA not available
if not torch.cuda.is_available():
torch.set_num_threads(MAX_WORKERS)
torch.set_num_interop_threads(MAX_WORKERS)
# Set device (GPU if available, otherwise CPU)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model_name = MODEL_NAME
self.tokenizer = None
self.model = None
self.processor = TextWindowProcessor()
self.initialize_model()
# Initialize the model and tokenizer
def initialize_model(self):
logger.info("Initializing model and tokenizer...")
# Using DeBERTa tokenizer specifically for better compatibility
from transformers import DebertaV2TokenizerFast
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
self.model_name,
model_max_length=MAX_LENGTH,
use_fast=True # Use fast tokenizer for better performance
)
# Load classification model with 2 labels (AI and Human)
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=2
).to(self.device)
# Try to load custom fine-tuned model weights if available
model_path = "model_20250209_184929_acc1.0000.pt"
if os.path.exists(model_path):
logger.info(f"Loading custom model from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
else:
logger.warning("Custom model file not found. Using base model.")
# Set model to evaluation mode
self.model.eval()
# Quick scan analysis - faster but less detailed
# Uses fixed-size windows with overlap
def quick_scan(self, text: str) -> Dict:
if not text.strip():
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
# Split text into sentences and then into windows
sentences = self.processor.split_into_sentences(text)
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
predictions = []
# Process windows in batches for efficiency
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
# Tokenize and prepare input for the model
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
# Run inference with no gradient calculation
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
# Process predictions for each window
for idx, window in enumerate(batch_windows):
prediction = {
'window': window,
'human_prob': probs[idx][1].item(),
'ai_prob': probs[idx][0].item(),
'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
}
predictions.append(prediction)
# Clean up to free memory
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
# Average probabilities across all windows for final prediction
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_windows': len(predictions)
}
# Detailed scan analysis - slower but provides sentence-level insights
# Uses windows centered around each sentence for more precise analysis
def detailed_scan(self, text: str) -> Dict:
text = text.rstrip()
if not text.strip():
return {
'sentence_predictions': [],
'highlighted_text': '',
'full_text': '',
'overall_prediction': {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
}
# Split text into sentences
sentences = self.processor.split_into_sentences(text)
if not sentences:
return {}
# Create a window centered on each sentence
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
# Track appearances and scores for each sentence
sentence_appearances = {i: 0 for i in range(len(sentences))}
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
# Process windows in batches
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
# Tokenize and prepare input
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
# Run inference
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
# Process each window's predictions
for window_idx, indices in enumerate(batch_indices):
center_idx = len(indices) // 2
center_weight = 0.7 # Center sentence gets 70% weight
edge_weight = 0.3 / (len(indices) - 1) # Other sentences share 30%
# Apply weighted prediction to each sentence in window
for pos, sent_idx in enumerate(indices):
weight = center_weight if pos == center_idx else edge_weight
sentence_appearances[sent_idx] += weight
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
# Clean up memory
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Calculate final predictions for each sentence with smoothing between adjacent sentences
sentence_predictions = []
for i in range(len(sentences)):
if sentence_appearances[i] > 0:
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
# Apply smoothing for sentences not at boundaries
if i > 0 and i < len(sentences) - 1:
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
current_pred = 'human' if human_prob > ai_prob else 'ai'
prev_pred = 'human' if prev_human > prev_ai else 'ai'
next_pred = 'human' if next_human > next_ai else 'ai'
# Only smooth if current sentence prediction differs from neighbors
if current_pred != prev_pred or current_pred != next_pred:
smooth_factor = 0.1 # 10% smoothing factor
human_prob = (human_prob * (1 - smooth_factor) +
(prev_human + next_human) * smooth_factor / 2)
ai_prob = (ai_prob * (1 - smooth_factor) +
(prev_ai + next_ai) * smooth_factor / 2)
sentence_predictions.append({
'sentence': sentences[i],
'human_prob': human_prob,
'ai_prob': ai_prob,
'prediction': 'human' if human_prob > ai_prob else 'ai',
'confidence': max(human_prob, ai_prob)
})
# Return detailed results
return {
'sentence_predictions': sentence_predictions,
'highlighted_text': self.format_predictions_html(sentence_predictions),
'full_text': text,
'overall_prediction': self.aggregate_predictions(sentence_predictions)
}
# Format predictions with color highlighting for visual assessment
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
html_parts = []
for pred in sentence_predictions:
sentence = pred['sentence']
confidence = pred['confidence']
# Color coding: stronger colors for high confidence, lighter for low confidence
if confidence >= CONFIDENCE_THRESHOLD:
if pred['prediction'] == 'human':
color = "#90EE90" # Green for human (high confidence)
else:
color = "#FFB6C6" # Pink for AI (high confidence)
else:
if pred['prediction'] == 'human':
color = "#E8F5E9" # Light green for human (low confidence)
else:
color = "#FFEBEE" # Light pink for AI (low confidence)
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
return " ".join(html_parts)
# Aggregate individual sentence predictions into an overall result
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
# Calculate average probabilities across all sentences
total_human_prob = sum(p['human_prob'] for p in predictions)
total_ai_prob = sum(p['ai_prob'] for p in predictions)
num_sentences = len(predictions)
avg_human_prob = total_human_prob / num_sentences
avg_ai_prob = total_ai_prob / num_sentences
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_sentences': num_sentences
}
# MAIN ANALYSIS FUNCTION
# Brings everything together to analyze text based on selected mode
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
start_time = time.time()
word_count = len(text.split())
# Auto-switch to quick mode for short texts
original_mode = mode
if word_count < 200 and mode == "detailed":
mode = "quick"
if mode == "quick":
# Perform quick analysis
result = classifier.quick_scan(text)
quick_analysis = f"""
PREDICTION: {result['prediction'].upper()}
Confidence: {result['confidence']*100:.1f}%
Windows analyzed: {result['num_windows']}
"""
# Notify if automatically switched from detailed to quick mode
if original_mode == "detailed":
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
execution_time = (time.time() - start_time) * 1000
return (
text, # Original text (no highlighting)
"Quick scan mode - no sentence-level analysis available",
quick_analysis
)
else:
# Perform detailed analysis
analysis = classifier.detailed_scan(text)
# Format sentence-by-sentence analysis text
detailed_analysis = []
for pred in analysis['sentence_predictions']:
confidence = pred['confidence'] * 100
detailed_analysis.append(f"Sentence: {pred['sentence']}")
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
detailed_analysis.append("-" * 50)
# Format overall result summary
final_pred = analysis['overall_prediction']
overall_result = f"""
FINAL PREDICTION: {final_pred['prediction'].upper()}
Overall confidence: {final_pred['confidence']*100:.1f}%
Number of sentences analyzed: {final_pred['num_sentences']}
"""
execution_time = (time.time() - start_time) * 1000
return (
analysis['highlighted_text'], # HTML-highlighted text
"\n".join(detailed_analysis), # Detailed sentence analysis
overall_result # Overall summary
)
# Initialize the classifier
classifier = TextClassifier()
# GRADIO USER INTERFACE
demo = gr.Interface(
fn=lambda text, mode: analyze_text(text, mode, classifier),
inputs=[
gr.Textbox(
lines=8,
placeholder="Enter text to analyze...",
label="Input Text"
),
gr.Radio(
choices=["quick", "detailed"],
value="quick",
label="Analysis Mode",
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
)
],
outputs=[
gr.HTML(label="Highlighted Analysis"), # Shows color-coded result
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10), # Detailed breakdown
gr.Textbox(label="Overall Result", lines=4) # Summary results
],
title="AI Text Detector",
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
api_name="predict",
flagging_mode="never"
)
# FastAPI configuration
app = demo.app
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["GET", "POST", "OPTIONS"],
allow_headers=["*"],
)
# Start the server when run directly
if __name__ == "__main__":
demo.queue() # Enable request queuing
demo.launch(
server_name="0.0.0.0", # Listen on all interfaces
server_port=7860, # Default Gradio port
share=True # Generate public URL
) |