File size: 20,896 Bytes
7eaaff0
ad52429
7b9d8b2
ad52429
7eaaff0
25f2b88
7eaaff0
 
ad52429
256b1d4
25f2b88
 
 
7eaaff0
 
 
 
ad52429
7eaaff0
 
59eee68
7eaaff0
 
25f2b88
 
7eaaff0
ad52429
7eaaff0
 
 
 
 
ad52429
7eaaff0
 
 
 
 
 
 
25f2b88
 
 
7eaaff0
 
 
 
 
7b9d8b2
 
 
 
 
 
 
 
 
 
 
25f2b88
 
7eaaff0
 
1bb7d9d
7eaaff0
25f2b88
7eaaff0
 
 
1bb7d9d
25f2b88
7eaaff0
 
 
1bb7d9d
7eaaff0
 
ad52429
7eaaff0
53f5f55
 
25f2b88
 
 
53f5f55
ad52429
7eaaff0
 
ad52429
 
25f2b88
ad52429
 
 
 
 
 
 
 
 
25f2b88
ad52429
 
3fe982e
ad52429
0fc43d5
3fe982e
25f2b88
154774e
ad52429
 
3fe982e
 
ad52429
 
 
 
7b9d8b2
 
ad52429
 
 
 
 
 
 
7b9d8b2
 
 
 
 
ad52429
25f2b88
7b9d8b2
 
7eaaff0
7b9d8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f2b88
 
 
 
 
7b9d8b2
7eaaff0
7b9d8b2
 
 
7eaaff0
 
7b9d8b2
 
 
 
 
 
 
 
 
99608c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444f8bc
 
 
99608c9
 
 
33fd63d
9a1a827
33fd63d
 
 
 
 
 
 
 
ad52429
444f8bc
33fd63d
 
 
444f8bc
33fd63d
 
444f8bc
33fd63d
 
 
444f8bc
33fd63d
444f8bc
 
 
 
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
444f8bc
33fd63d
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
444f8bc
33fd63d
 
 
 
444f8bc
33fd63d
 
 
 
 
 
444f8bc
 
33fd63d
 
 
 
 
444f8bc
33fd63d
 
 
 
444f8bc
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
1bb7d9d
ad52429
 
 
 
7eaaff0
 
 
ad52429
7eaaff0
 
ad52429
7eaaff0
ad52429
7eaaff0
 
ad52429
7eaaff0
ad52429
 
 
 
 
7eaaff0
ad52429
 
7eaaff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad52429
 
 
 
7b9d8b2
ad52429
 
 
 
 
 
 
 
 
 
 
 
eb0611f
ad52429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d3dab
25f2b88
47d3dab
ad52429
c3fb048
 
 
f69e7ad
c3fb048
f69e7ad
c3fb048
 
 
f69e7ad
7eaaff0
f69e7ad
d946b22
f69e7ad
d946b22
f69e7ad
d946b22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict, Tuple
import logging
import os
import gradio as gr
from fastapi.middleware.cors import CORSMiddleware
from concurrent.futures import ThreadPoolExecutor
from functools import partial

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 6
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
BATCH_SIZE = 8  # Reduced batch size for CPU
MAX_WORKERS = 4  # Number of worker threads for processing

class TextWindowProcessor:
    def __init__(self):
        try:
            self.nlp = spacy.load("en_core_web_sm")
        except OSError:
            logger.info("Downloading spacy model...")
            spacy.cli.download("en_core_web_sm")
            self.nlp = spacy.load("en_core_web_sm")

        if 'sentencizer' not in self.nlp.pipe_names:
            self.nlp.add_pipe('sentencizer')

        disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
        self.nlp.disable_pipes(*disabled_pipes)
        
        # Initialize thread pool for parallel processing
        self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)

    def split_into_sentences(self, text: str) -> List[str]:
        doc = self.nlp(text)
        return [str(sent).strip() for sent in doc.sents]

    def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
        if len(sentences) < window_size:
            return [" ".join(sentences)]

        windows = []
        stride = window_size - overlap
        for i in range(0, len(sentences) - window_size + 1, stride):
            window = sentences[i:i + window_size]
            windows.append(" ".join(window))
        return windows

    def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
        """Create windows with better boundary handling"""
        windows = []
        window_sentence_indices = []

        for i in range(len(sentences)):
            # Calculate window boundaries centered on current sentence
            half_window = window_size // 2
            start_idx = max(0, i - half_window)
            end_idx = min(len(sentences), i + half_window + 1)

            # Create the window
            window = sentences[start_idx:end_idx]
            windows.append(" ".join(window))
            window_sentence_indices.append(list(range(start_idx, end_idx)))

        return windows, window_sentence_indices

class TextClassifier:
    def __init__(self):
        # Set thread configuration before any model loading or parallel work
        if not torch.cuda.is_available():
            torch.set_num_threads(MAX_WORKERS)
            torch.set_num_interop_threads(MAX_WORKERS)
            
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model_name = MODEL_NAME
        self.tokenizer = None
        self.model = None
        self.processor = TextWindowProcessor()
        self.initialize_model()

    def initialize_model(self):
        """Initialize the model and tokenizer."""
        logger.info("Initializing model and tokenizer...")
        
        from transformers import DebertaV2TokenizerFast
        
        self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
            self.model_name,
            model_max_length=MAX_LENGTH,
            use_fast=True
        )
        
        self.model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name,
            num_labels=2
        ).to(self.device)
            
        model_path = "model_20250209_184929_acc1.0000.pt"
        if os.path.exists(model_path):
            logger.info(f"Loading custom model from {model_path}")
            checkpoint = torch.load(model_path, map_location=self.device)
            self.model.load_state_dict(checkpoint['model_state_dict'])
        else:
            logger.warning("Custom model file not found. Using base model.")
            
        self.model.eval()

    def quick_scan(self, text: str) -> Dict:
        """Perform a quick scan using simple window analysis."""
        if not text.strip():
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_windows': 0
            }

        sentences = self.processor.split_into_sentences(text)
        windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)

        predictions = []
        
        # Process windows in smaller batches for CPU efficiency
        for i in range(0, len(windows), BATCH_SIZE):
            batch_windows = windows[i:i + BATCH_SIZE]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                for idx, window in enumerate(batch_windows):
                    prediction = {
                        'window': window,
                        'human_prob': probs[idx][1].item(),
                        'ai_prob': probs[idx][0].item(),
                        'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
                    }
                    predictions.append(prediction)

            # Clean up GPU memory if available
            del inputs, outputs, probs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_windows': 0
            }

        avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
        avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_windows': len(predictions)
        }

    # def detailed_scan(self, text: str) -> Dict:
    #     """Original prediction method with modified window handling"""
    #     if self.model is None or self.tokenizer is None:
    #         self.load_model()

    #     self.model.eval()
    #     sentences = self.processor.split_into_sentences(text)
    #     if not sentences:
    #         return {}

    #     # Create centered windows for each sentence
    #     windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)

    #     # Track scores for each sentence
    #     sentence_appearances = {i: 0 for i in range(len(sentences))}
    #     sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}

    #     # Process windows in batches
    #     batch_size = 16
    #     for i in range(0, len(windows), batch_size):
    #         batch_windows = windows[i:i + batch_size]
    #         batch_indices = window_sentence_indices[i:i + batch_size]

    #         inputs = self.tokenizer(
    #             batch_windows,
    #             truncation=True,
    #             padding=True,
    #             max_length=MAX_LENGTH,
    #             return_tensors="pt"
    #         ).to(self.device)

    #         with torch.no_grad():
    #             outputs = self.model(**inputs)
    #             probs = F.softmax(outputs.logits, dim=-1)

    #             # Attribute predictions more carefully
    #             for window_idx, indices in enumerate(batch_indices):
    #                 center_idx = len(indices) // 2
    #                 center_weight = 0.7  # Higher weight for center sentence
    #                 edge_weight = 0.3 / (len(indices) - 1)  # Distribute remaining weight

    #                 for pos, sent_idx in enumerate(indices):
    #                     # Apply higher weight to center sentence
    #                     weight = center_weight if pos == center_idx else edge_weight
    #                     sentence_appearances[sent_idx] += weight
    #                     sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
    #                     sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()

    #         del inputs, outputs, probs
    #         if torch.cuda.is_available():
    #             torch.cuda.empty_cache()

    #     # Calculate final predictions
    #     sentence_predictions = []
    #     for i in range(len(sentences)):
    #         if sentence_appearances[i] > 0:
    #             human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
    #             ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]

    #             # Only apply minimal smoothing at prediction boundaries
    #             if i > 0 and i < len(sentences) - 1:
    #                 prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
    #                 prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
    #                 next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
    #                 next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]

    #                 # Check if we're at a prediction boundary
    #                 current_pred = 'human' if human_prob > ai_prob else 'ai'
    #                 prev_pred = 'human' if prev_human > prev_ai else 'ai'
    #                 next_pred = 'human' if next_human > next_ai else 'ai'

    #                 if current_pred != prev_pred or current_pred != next_pred:
    #                     # Small adjustment at boundaries
    #                     smooth_factor = 0.1
    #                     human_prob = (human_prob * (1 - smooth_factor) + 
    #                                 (prev_human + next_human) * smooth_factor / 2)
    #                     ai_prob = (ai_prob * (1 - smooth_factor) + 
    #                             (prev_ai + next_ai) * smooth_factor / 2)

    #             sentence_predictions.append({
    #                 'sentence': sentences[i],
    #                 'human_prob': human_prob,
    #                 'ai_prob': ai_prob,
    #                 'prediction': 'human' if human_prob > ai_prob else 'ai',
    #                 'confidence': max(human_prob, ai_prob)
    #             })

    #     return {
    #         'sentence_predictions': sentence_predictions,
    #         'highlighted_text': self.format_predictions_html(sentence_predictions),
    #         'full_text': text,
    #         'overall_prediction': self.aggregate_predictions(sentence_predictions)
    #     }

    def detailed_scan(self, text: str) -> Dict:
        """Perform a detailed scan with improved sentence-level analysis."""
        # Clean up trailing whitespace
        text = text.rstrip()
        
        if not text.strip():
            return {
                'sentence_predictions': [],
                'highlighted_text': '',
                'full_text': '',
                'overall_prediction': {
                    'prediction': 'unknown',
                    'confidence': 0.0,
                    'num_sentences': 0
                }
            }

        sentences = self.processor.split_into_sentences(text)
        if not sentences:
            return {}

        # Create centered windows for each sentence
        windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)

        # Track scores for each sentence
        sentence_appearances = {i: 0 for i in range(len(sentences))}
        sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}

        # Process windows in batches
        for i in range(0, len(windows), BATCH_SIZE):
            batch_windows = windows[i:i + BATCH_SIZE]
            batch_indices = window_sentence_indices[i:i + BATCH_SIZE]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                # Attribute predictions with weighted scoring
                for window_idx, indices in enumerate(batch_indices):
                    center_idx = len(indices) // 2
                    center_weight = 0.7  # Higher weight for center sentence
                    edge_weight = 0.3 / (len(indices) - 1)  # Distribute remaining weight

                    for pos, sent_idx in enumerate(indices):
                        # Apply higher weight to center sentence
                        weight = center_weight if pos == center_idx else edge_weight
                        sentence_appearances[sent_idx] += weight
                        sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
                        sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()

            # Clean up memory
            del inputs, outputs, probs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        # Calculate final predictions with boundary smoothing
        sentence_predictions = []
        for i in range(len(sentences)):
            if sentence_appearances[i] > 0:
                human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
                ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]

                # Apply minimal smoothing at prediction boundaries
                if i > 0 and i < len(sentences) - 1:
                    prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
                    prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
                    next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
                    next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]

                    # Check if we're at a prediction boundary
                    current_pred = 'human' if human_prob > ai_prob else 'ai'
                    prev_pred = 'human' if prev_human > prev_ai else 'ai'
                    next_pred = 'human' if next_human > next_ai else 'ai'

                    if current_pred != prev_pred or current_pred != next_pred:
                        # Small adjustment at boundaries
                        smooth_factor = 0.1
                        human_prob = (human_prob * (1 - smooth_factor) + 
                                    (prev_human + next_human) * smooth_factor / 2)
                        ai_prob = (ai_prob * (1 - smooth_factor) + 
                                (prev_ai + next_ai) * smooth_factor / 2)

                sentence_predictions.append({
                    'sentence': sentences[i],
                    'human_prob': human_prob,
                    'ai_prob': ai_prob,
                    'prediction': 'human' if human_prob > ai_prob else 'ai',
                    'confidence': max(human_prob, ai_prob)
                })

        return {
            'sentence_predictions': sentence_predictions,
            'highlighted_text': self.format_predictions_html(sentence_predictions),
            'full_text': text,
            'overall_prediction': self.aggregate_predictions(sentence_predictions)
        }

    def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
        """Format predictions as HTML with color-coding."""
        html_parts = []
        
        for pred in sentence_predictions:
            sentence = pred['sentence']
            confidence = pred['confidence']
            
            if confidence >= CONFIDENCE_THRESHOLD:
                if pred['prediction'] == 'human':
                    color = "#90EE90"  # Light green
                else:
                    color = "#FFB6C6"  # Light red
            else:
                if pred['prediction'] == 'human':
                    color = "#E8F5E9"  # Very light green
                else:
                    color = "#FFEBEE"  # Very light red
                    
            html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
            
        return " ".join(html_parts)

    def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
        """Aggregate predictions from multiple sentences into a single prediction."""
        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_sentences': 0
            }

        total_human_prob = sum(p['human_prob'] for p in predictions)
        total_ai_prob = sum(p['ai_prob'] for p in predictions)
        num_sentences = len(predictions)

        avg_human_prob = total_human_prob / num_sentences
        avg_ai_prob = total_ai_prob / num_sentences

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_sentences': num_sentences
        }

def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
    """Analyze text using specified mode and return formatted results."""
    if mode == "quick":
        result = classifier.quick_scan(text)
        
        quick_analysis = f"""
        PREDICTION: {result['prediction'].upper()}
        Confidence: {result['confidence']*100:.1f}%
        Windows analyzed: {result['num_windows']}
        """
        
        return (
            text,  # No highlighting in quick mode
            "Quick scan mode - no sentence-level analysis available",
            quick_analysis
        )
    else:
        analysis = classifier.detailed_scan(text)
        
        detailed_analysis = []
        for pred in analysis['sentence_predictions']:
            confidence = pred['confidence'] * 100
            detailed_analysis.append(f"Sentence: {pred['sentence']}")
            detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
            detailed_analysis.append(f"Confidence: {confidence:.1f}%")
            detailed_analysis.append("-" * 50)
        
        final_pred = analysis['overall_prediction']
        overall_result = f"""
        FINAL PREDICTION: {final_pred['prediction'].upper()}
        Overall confidence: {final_pred['confidence']*100:.1f}%
        Number of sentences analyzed: {final_pred['num_sentences']}
        """
        
        return (
            analysis['highlighted_text'],
            "\n".join(detailed_analysis),
            overall_result
        )

# Initialize the classifier globally
classifier = TextClassifier()

# Create Gradio interface
demo = gr.Interface(
    fn=lambda text, mode: analyze_text(text, mode, classifier),
    inputs=[
        gr.Textbox(
            lines=8,
            placeholder="Enter text to analyze...",
            label="Input Text"
        ),
        gr.Radio(
            choices=["quick", "detailed"],
            value="quick",
            label="Analysis Mode",
            info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
        )
    ],
    outputs=[
        gr.HTML(label="Highlighted Analysis"),
        gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
        gr.Textbox(label="Overall Result", lines=4)
    ],
    title="AI Text Detector",
    description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis.",
    examples=[
        ["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "quick"],
        ["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "detailed"],
    ],
    api_name="predict",
    flagging_mode="never"
)

app = demo.app
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # For development
    allow_credentials=True,
    allow_methods=["GET", "POST", "OPTIONS"],  # Explicitly list methods
    allow_headers=["*"],
)

# Ensure CORS is applied before launching
if __name__ == "__main__":
    demo.queue()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )