File size: 26,405 Bytes
7eaaff0 ad52429 7b9d8b2 ad52429 7eaaff0 25f2b88 7eaaff0 ad52429 256b1d4 25f2b88 a167831 83846c5 a167831 25f2b88 7eaaff0 ad52429 7eaaff0 59eee68 7eaaff0 25f2b88 7eaaff0 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 83846c5 a167831 ad52429 7eaaff0 ad52429 7eaaff0 25f2b88 7eaaff0 7b9d8b2 25f2b88 7eaaff0 1bb7d9d 7eaaff0 25f2b88 7eaaff0 1bb7d9d 25f2b88 7eaaff0 1bb7d9d 7eaaff0 ad52429 7eaaff0 53f5f55 25f2b88 53f5f55 ad52429 7eaaff0 ad52429 25f2b88 ad52429 25f2b88 ad52429 3fe982e ad52429 0fc43d5 3fe982e 25f2b88 154774e ad52429 3fe982e ad52429 7b9d8b2 ad52429 7b9d8b2 ad52429 25f2b88 7b9d8b2 7eaaff0 7b9d8b2 25f2b88 7b9d8b2 7eaaff0 7b9d8b2 7eaaff0 7b9d8b2 444f8bc 99608c9 33fd63d 9a1a827 33fd63d ad52429 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 444f8bc 33fd63d 1bb7d9d ad52429 7eaaff0 ad52429 7eaaff0 ad52429 7eaaff0 ad52429 7eaaff0 ad52429 7eaaff0 ad52429 7eaaff0 ad52429 7eaaff0 a167831 83846c5 a167831 ad52429 a167831 787f44d ad52429 a167831 7b9d8b2 ad52429 a167831 ad52429 787f44d a167831 ad52429 a167831 83846c5 a167831 ad52429 eb0611f a167831 ad52429 a167831 ad52429 a167831 ad52429 a167831 ad52429 a167831 83846c5 a167831 ad52429 83846c5 ad52429 a167831 47d3dab 25f2b88 47d3dab ad52429 c3fb048 f69e7ad c3fb048 f69e7ad c3fb048 83846c5 f69e7ad 7eaaff0 83846c5 f69e7ad d946b22 f69e7ad d946b22 f69e7ad d946b22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict, Tuple
import logging
import os
import gradio as gr
from fastapi.middleware.cors import CORSMiddleware
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import time
import csv
from datetime import datetime
import threading
import random
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 6
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
BATCH_SIZE = 8 # Reduced batch size for CPU
MAX_WORKERS = 4 # Number of worker threads for processing
class CSVLogger:
def __init__(self, log_dir="."):
"""Initialize the CSV logger.
Args:
log_dir: Directory to store CSV log files
"""
self.log_dir = log_dir
os.makedirs(log_dir, exist_ok=True)
# Create monthly CSV files
current_month = datetime.now().strftime('%Y-%m')
self.metrics_path = os.path.join(log_dir, f"metrics_{current_month}.csv")
self.text_path = os.path.join(log_dir, f"text_data_{current_month}.csv")
# Define headers
self.metrics_headers = [
'entry_id', 'timestamp', 'word_count', 'mode', 'prediction',
'confidence', 'prediction_time_seconds', 'num_sentences'
]
self.text_headers = ['entry_id', 'timestamp', 'text']
# Initialize the files if they don't exist
self._initialize_files()
# Create locks for thread safety
self.metrics_lock = threading.Lock()
self.text_lock = threading.Lock()
print(f"CSV logger initialized with files at: {os.path.abspath(self.metrics_path)}")
def _initialize_files(self):
"""Create the CSV files with headers if they don't exist."""
# Initialize metrics file
if not os.path.exists(self.metrics_path):
with open(self.metrics_path, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(self.metrics_headers)
# Initialize text data file
if not os.path.exists(self.text_path):
with open(self.text_path, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(self.text_headers)
def log_prediction(self, prediction_data, store_text=True):
"""Log prediction data to CSV files.
Args:
prediction_data: Dictionary containing prediction metrics
store_text: Whether to store the full text
"""
# Generate a unique entry ID
entry_id = f"{datetime.now().strftime('%Y%m%d%H%M%S')}_{random.randint(1000, 9999)}"
# Extract text if present
text = prediction_data.pop('text', None) if store_text else None
# Ensure timestamp is present
if 'timestamp' not in prediction_data:
prediction_data['timestamp'] = datetime.now().isoformat()
# Add entry_id to metrics data
metrics_data = prediction_data.copy()
metrics_data['entry_id'] = entry_id
# Start a thread to write data
thread = threading.Thread(
target=self._write_to_csv,
args=(metrics_data, text, entry_id, store_text)
)
thread.daemon = True
thread.start()
def _write_to_csv(self, metrics_data, text, entry_id, store_text):
"""Write data to CSV files with retry mechanism."""
max_retries = 5
retry_delay = 0.5
# Write metrics data
for attempt in range(max_retries):
try:
with self.metrics_lock:
with open(self.metrics_path, 'a', newline='') as f:
writer = csv.writer(f)
# Prepare row in the correct order based on headers
row = [
metrics_data.get('entry_id', ''),
metrics_data.get('timestamp', ''),
metrics_data.get('word_count', 0),
metrics_data.get('mode', ''),
metrics_data.get('prediction', ''),
metrics_data.get('confidence', 0.0),
metrics_data.get('prediction_time_seconds', 0.0),
metrics_data.get('num_sentences', 0)
]
writer.writerow(row)
print(f"Successfully wrote metrics to CSV, entry_id: {entry_id}")
break
except Exception as e:
print(f"Error writing metrics to CSV (attempt {attempt+1}/{max_retries}): {e}")
time.sleep(retry_delay * (attempt + 1))
else:
# If all retries fail, write to backup file
backup_path = os.path.join(self.log_dir, f"metrics_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
try:
with open(backup_path, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(self.metrics_headers)
row = [
metrics_data.get('entry_id', ''),
metrics_data.get('timestamp', ''),
metrics_data.get('word_count', 0),
metrics_data.get('mode', ''),
metrics_data.get('prediction', ''),
metrics_data.get('confidence', 0.0),
metrics_data.get('prediction_time_seconds', 0.0),
metrics_data.get('num_sentences', 0)
]
writer.writerow(row)
print(f"Wrote metrics backup to {backup_path}")
except Exception as e:
print(f"Error writing metrics backup: {e}")
# Write text data if requested
if store_text and text:
for attempt in range(max_retries):
try:
with self.text_lock:
with open(self.text_path, 'a', newline='') as f:
writer = csv.writer(f)
# Handle potential newlines in text by replacing them
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
print(f"Successfully wrote text data to CSV, entry_id: {entry_id}")
break
except Exception as e:
print(f"Error writing text data to CSV (attempt {attempt+1}/{max_retries}): {e}")
time.sleep(retry_delay * (attempt + 1))
else:
# If all retries fail, write to backup file
backup_path = os.path.join(self.log_dir, f"text_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
try:
with open(backup_path, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(self.text_headers)
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
print(f"Wrote text data backup to {backup_path}")
except Exception as e:
print(f"Error writing text data backup: {e}")
class TextWindowProcessor:
def __init__(self):
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading spacy model...")
spacy.cli.download("en_core_web_sm")
self.nlp = spacy.load("en_core_web_sm")
if 'sentencizer' not in self.nlp.pipe_names:
self.nlp.add_pipe('sentencizer')
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
self.nlp.disable_pipes(*disabled_pipes)
# Initialize thread pool for parallel processing
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
def split_into_sentences(self, text: str) -> List[str]:
doc = self.nlp(text)
return [str(sent).strip() for sent in doc.sents]
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
if len(sentences) < window_size:
return [" ".join(sentences)]
windows = []
stride = window_size - overlap
for i in range(0, len(sentences) - window_size + 1, stride):
window = sentences[i:i + window_size]
windows.append(" ".join(window))
return windows
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
"""Create windows with better boundary handling"""
windows = []
window_sentence_indices = []
for i in range(len(sentences)):
# Calculate window boundaries centered on current sentence
half_window = window_size // 2
start_idx = max(0, i - half_window)
end_idx = min(len(sentences), i + half_window + 1)
# Create the window
window = sentences[start_idx:end_idx]
windows.append(" ".join(window))
window_sentence_indices.append(list(range(start_idx, end_idx)))
return windows, window_sentence_indices
class TextClassifier:
def __init__(self):
# Set thread configuration before any model loading or parallel work
if not torch.cuda.is_available():
torch.set_num_threads(MAX_WORKERS)
torch.set_num_interop_threads(MAX_WORKERS)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model_name = MODEL_NAME
self.tokenizer = None
self.model = None
self.processor = TextWindowProcessor()
self.initialize_model()
def initialize_model(self):
"""Initialize the model and tokenizer."""
logger.info("Initializing model and tokenizer...")
from transformers import DebertaV2TokenizerFast
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
self.model_name,
model_max_length=MAX_LENGTH,
use_fast=True
)
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=2
).to(self.device)
model_path = "model_20250209_184929_acc1.0000.pt"
if os.path.exists(model_path):
logger.info(f"Loading custom model from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
else:
logger.warning("Custom model file not found. Using base model.")
self.model.eval()
def quick_scan(self, text: str) -> Dict:
"""Perform a quick scan using simple window analysis."""
if not text.strip():
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
sentences = self.processor.split_into_sentences(text)
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
predictions = []
# Process windows in smaller batches for CPU efficiency
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
for idx, window in enumerate(batch_windows):
prediction = {
'window': window,
'human_prob': probs[idx][1].item(),
'ai_prob': probs[idx][0].item(),
'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
}
predictions.append(prediction)
# Clean up GPU memory if available
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_windows': len(predictions)
}
def detailed_scan(self, text: str) -> Dict:
"""Perform a detailed scan with improved sentence-level analysis."""
# Clean up trailing whitespace
text = text.rstrip()
if not text.strip():
return {
'sentence_predictions': [],
'highlighted_text': '',
'full_text': '',
'overall_prediction': {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
}
sentences = self.processor.split_into_sentences(text)
if not sentences:
return {}
# Create centered windows for each sentence
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
# Track scores for each sentence
sentence_appearances = {i: 0 for i in range(len(sentences))}
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
# Process windows in batches
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
# Attribute predictions with weighted scoring
for window_idx, indices in enumerate(batch_indices):
center_idx = len(indices) // 2
center_weight = 0.7 # Higher weight for center sentence
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
for pos, sent_idx in enumerate(indices):
# Apply higher weight to center sentence
weight = center_weight if pos == center_idx else edge_weight
sentence_appearances[sent_idx] += weight
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
# Clean up memory
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Calculate final predictions with boundary smoothing
sentence_predictions = []
for i in range(len(sentences)):
if sentence_appearances[i] > 0:
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
# Apply minimal smoothing at prediction boundaries
if i > 0 and i < len(sentences) - 1:
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
# Check if we're at a prediction boundary
current_pred = 'human' if human_prob > ai_prob else 'ai'
prev_pred = 'human' if prev_human > prev_ai else 'ai'
next_pred = 'human' if next_human > next_ai else 'ai'
if current_pred != prev_pred or current_pred != next_pred:
# Small adjustment at boundaries
smooth_factor = 0.1
human_prob = (human_prob * (1 - smooth_factor) +
(prev_human + next_human) * smooth_factor / 2)
ai_prob = (ai_prob * (1 - smooth_factor) +
(prev_ai + next_ai) * smooth_factor / 2)
sentence_predictions.append({
'sentence': sentences[i],
'human_prob': human_prob,
'ai_prob': ai_prob,
'prediction': 'human' if human_prob > ai_prob else 'ai',
'confidence': max(human_prob, ai_prob)
})
return {
'sentence_predictions': sentence_predictions,
'highlighted_text': self.format_predictions_html(sentence_predictions),
'full_text': text,
'overall_prediction': self.aggregate_predictions(sentence_predictions)
}
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
"""Format predictions as HTML with color-coding."""
html_parts = []
for pred in sentence_predictions:
sentence = pred['sentence']
confidence = pred['confidence']
if confidence >= CONFIDENCE_THRESHOLD:
if pred['prediction'] == 'human':
color = "#90EE90" # Light green
else:
color = "#FFB6C6" # Light red
else:
if pred['prediction'] == 'human':
color = "#E8F5E9" # Very light green
else:
color = "#FFEBEE" # Very light red
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
return " ".join(html_parts)
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
"""Aggregate predictions from multiple sentences into a single prediction."""
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
total_human_prob = sum(p['human_prob'] for p in predictions)
total_ai_prob = sum(p['ai_prob'] for p in predictions)
num_sentences = len(predictions)
avg_human_prob = total_human_prob / num_sentences
avg_ai_prob = total_ai_prob / num_sentences
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_sentences': num_sentences
}
# Initialize the logger
csv_logger = CSVLogger(log_dir=".")
# Add file listing endpoint for debugging
def list_files():
"""List all files in the current directory and subdirectories."""
all_files = []
for root, dirs, files in os.walk('.'):
for file in files:
all_files.append(os.path.join(root, file))
return all_files
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
"""Analyze text using specified mode and return formatted results."""
# Start timing the prediction
start_time = time.time()
# Count words in the text
word_count = len(text.split())
# If text is less than 200 words and detailed mode is selected, switch to quick mode
original_mode = mode
if word_count < 200 and mode == "detailed":
mode = "quick"
if mode == "quick":
result = classifier.quick_scan(text)
prediction = result['prediction']
confidence = result['confidence']
num_windows = result['num_windows']
quick_analysis = f"""
PREDICTION: {prediction.upper()}
Confidence: {confidence*100:.1f}%
Windows analyzed: {num_windows}
"""
# Add note if mode was switched
if original_mode == "detailed":
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
output = (
text, # No highlighting in quick mode
"Quick scan mode - no sentence-level analysis available",
quick_analysis
)
# End timing
end_time = time.time()
prediction_time = end_time - start_time
# Log the data
log_data = {
"timestamp": datetime.now().isoformat(),
"word_count": word_count,
"mode": mode,
"prediction": prediction,
"confidence": confidence,
"prediction_time_seconds": prediction_time,
"num_sentences": 0, # No sentence analysis in quick mode
"text": text
}
# Log to CSV
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
csv_logger.log_prediction(log_data)
else:
analysis = classifier.detailed_scan(text)
prediction = analysis['overall_prediction']['prediction']
confidence = analysis['overall_prediction']['confidence']
num_sentences = analysis['overall_prediction']['num_sentences']
detailed_analysis = []
for pred in analysis['sentence_predictions']:
pred_confidence = pred['confidence'] * 100
detailed_analysis.append(f"Sentence: {pred['sentence']}")
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
detailed_analysis.append(f"Confidence: {pred_confidence:.1f}%")
detailed_analysis.append("-" * 50)
final_pred = analysis['overall_prediction']
overall_result = f"""
FINAL PREDICTION: {final_pred['prediction'].upper()}
Overall confidence: {final_pred['confidence']*100:.1f}%
Number of sentences analyzed: {final_pred['num_sentences']}
"""
output = (
analysis['highlighted_text'],
"\n".join(detailed_analysis),
overall_result
)
# End timing
end_time = time.time()
prediction_time = end_time - start_time
# Log the data
log_data = {
"timestamp": datetime.now().isoformat(),
"word_count": word_count,
"mode": mode,
"prediction": prediction,
"confidence": confidence,
"prediction_time_seconds": prediction_time,
"num_sentences": num_sentences,
"text": text
}
# Log to CSV
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
csv_logger.log_prediction(log_data)
return output
# Initialize the classifier globally
classifier = TextClassifier()
# Create Gradio interface
demo = gr.Interface(
fn=lambda text, mode: analyze_text(text, mode, classifier),
inputs=[
gr.Textbox(
lines=8,
placeholder="Enter text to analyze...",
label="Input Text"
),
gr.Radio(
choices=["quick", "detailed"],
value="quick",
label="Analysis Mode",
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
)
],
outputs=[
gr.HTML(label="Highlighted Analysis"),
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
gr.Textbox(label="Overall Result", lines=4)
],
title="AI Text Detector",
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions. Note: For testing purposes, text and analysis data will be recorded.",
api_name="predict",
flagging_mode="never"
)
app = demo.app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # For development
allow_credentials=True,
allow_methods=["GET", "POST", "OPTIONS"], # Explicitly list methods
allow_headers=["*"],
)
# Add file listing endpoint for debugging
@app.get("/list_files")
async def get_files():
return {"files": list_files()}
# Ensure CORS is applied before launching
if __name__ == "__main__":
# Create empty CSV files if they don't exist
current_month = datetime.now().strftime('%Y-%m')
metrics_path = f"metrics_{current_month}.csv"
text_path = f"text_data_{current_month}.csv"
print(f"Current directory: {os.getcwd()}")
print(f"Looking for CSV files: {metrics_path}, {text_path}")
if not os.path.exists(metrics_path):
print(f"Creating metrics CSV file: {metrics_path}")
if not os.path.exists(text_path):
print(f"Creating text data CSV file: {text_path}")
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |