|
--- |
|
library_name: pytorch |
|
license: creativeml-openrail-m |
|
tags: |
|
- generative_ai |
|
- quantized |
|
- android |
|
pipeline_tag: unconditional-image-generation |
|
|
|
--- |
|
|
|
 |
|
|
|
# Stable-Diffusion-v2.1: Optimized for Mobile Deployment |
|
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions |
|
|
|
|
|
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image. |
|
|
|
This model is an implementation of Stable-Diffusion-v2.1 found [here](https://github.com/CompVis/stable-diffusion/tree/main). |
|
|
|
|
|
This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices. |
|
More details on model performance across various devices, can be found |
|
[here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized). |
|
|
|
|
|
### Model Details |
|
|
|
- **Model Type:** Image generation |
|
- **Model Stats:** |
|
- Input: Text prompt to generate image |
|
- Text Encoder Number of parameters: 340M |
|
- UNet Number of parameters: 865M |
|
- VAE Decoder Number of parameters: 83M |
|
- Model size: 1GB |
|
|
|
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| TextEncoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.666 ms | 0 - 3 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoderQuantizable.so) | |
|
| TextEncoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.647 ms | 0 - 20 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoderQuantizable.so) | |
|
| TextEncoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.2 ms | 0 - 15 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.84 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | SA7255P ADP | SA7255P | QNN | 88.113 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.62 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.654 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | SA8775P ADP | SA8775P | QNN | 7.869 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 88.113 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.636 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script | |
|
| TextEncoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 7.869 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 96.977 ms | 0 - 3 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UnetQuantizable.so) | |
|
| UnetQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 69.178 ms | 0 - 17 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UnetQuantizable.so) | |
|
| UnetQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 61.668 ms | 0 - 14 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 99.461 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | SA7255P ADP | SA7255P | QNN | 1467.935 ms | 0 - 7 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 98.746 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 97.177 ms | 1 - 3 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | SA8775P ADP | SA8775P | QNN | 110.665 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 1467.935 ms | 0 - 7 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 97.457 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script | |
|
| UnetQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 110.665 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 295.307 ms | 0 - 71 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/VaeDecoderQuantizable.so) | |
|
| VaeDecoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 223.33 ms | 0 - 312 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/VaeDecoderQuantizable.so) | |
|
| VaeDecoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 189.418 ms | 0 - 356 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 267.095 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | SA7255P ADP | SA7255P | QNN | 4460.526 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 274.71 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 269.652 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | SA8775P ADP | SA8775P | QNN | 301.141 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 4460.526 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 271.222 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script | |
|
| VaeDecoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 301.141 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script | |
|
|
|
|
|
|
|
|
|
## Installation |
|
|
|
|
|
Install the package via pip: |
|
```bash |
|
pip install "qai-hub-models[stable-diffusion-v2-1-quantized]" -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html |
|
``` |
|
|
|
|
|
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device |
|
|
|
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your |
|
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. |
|
|
|
With this API token, you can configure your client to run models on the cloud |
|
hosted devices. |
|
```bash |
|
qai-hub configure --api_token API_TOKEN |
|
``` |
|
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. |
|
|
|
|
|
|
|
## Demo off target |
|
|
|
The package contains a simple end-to-end demo that downloads pre-trained |
|
weights and runs this model on a sample input. |
|
|
|
```bash |
|
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo |
|
``` |
|
|
|
The above demo runs a reference implementation of pre-processing, model |
|
inference, and post processing. |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo |
|
``` |
|
|
|
|
|
### Run model on a cloud-hosted device |
|
|
|
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® |
|
device. This script does the following: |
|
* Performance check on-device on a cloud-hosted device |
|
* Downloads compiled assets that can be deployed on-device for Android. |
|
* Accuracy check between PyTorch and on-device outputs. |
|
|
|
```bash |
|
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.export |
|
``` |
|
``` |
|
Profiling Results |
|
------------------------------------------------------------ |
|
TextEncoderQuantizable |
|
Device : Samsung Galaxy S23 (13) |
|
Runtime : QNN |
|
Estimated inference time (ms) : 6.7 |
|
Estimated peak memory usage (MB): [0, 3] |
|
Total # Ops : 787 |
|
Compute Unit(s) : NPU (787 ops) |
|
|
|
------------------------------------------------------------ |
|
UnetQuantizable |
|
Device : Samsung Galaxy S23 (13) |
|
Runtime : QNN |
|
Estimated inference time (ms) : 97.0 |
|
Estimated peak memory usage (MB): [0, 3] |
|
Total # Ops : 5891 |
|
Compute Unit(s) : NPU (5891 ops) |
|
|
|
------------------------------------------------------------ |
|
VaeDecoderQuantizable |
|
Device : Samsung Galaxy S23 (13) |
|
Runtime : QNN |
|
Estimated inference time (ms) : 295.3 |
|
Estimated peak memory usage (MB): [0, 71] |
|
Total # Ops : 189 |
|
Compute Unit(s) : NPU (189 ops) |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
## Deploying compiled model to Android |
|
|
|
|
|
The models can be deployed using multiple runtimes: |
|
- TensorFlow Lite (`.tflite` export): [This |
|
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a |
|
guide to deploy the .tflite model in an Android application. |
|
|
|
|
|
- QNN (`.so` export ): This [sample |
|
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) |
|
provides instructions on how to use the `.so` shared library in an Android application. |
|
|
|
|
|
## View on Qualcomm® AI Hub |
|
Get more details on Stable-Diffusion-v2.1's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized). |
|
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) |
|
|
|
|
|
## License |
|
* The license for the original implementation of Stable-Diffusion-v2.1 can be found |
|
[here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE) |
|
|
|
|
|
|
|
## References |
|
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) |
|
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
|
|
|