library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation
Stable-Diffusion-v2.1: Optimized for Mobile Deployment
State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v2.1 found here.
This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_generation
- Model Stats:
- Input: Text prompt to generate image
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- Model size: 1GB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
TextEncoderQuantizable | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 15.87 ms | 0 - 9 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 6.665 ms | 0 - 3 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 6.814 ms | 0 - 9 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 15.87 ms | 0 - 9 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 6.881 ms | 0 - 2 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 6.673 ms | 0 - 2 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 6.814 ms | 0 - 9 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 6.687 ms | 0 - 2 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.911 ms | 0 - 387 MB | NPU | Stable-Diffusion-v2.1.onnx |
TextEncoderQuantizable | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 4.673 ms | 0 - 18 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.152 ms | 0 - 19 MB | NPU | Stable-Diffusion-v2.1.onnx |
TextEncoderQuantizable | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 4.068 ms | 0 - 14 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.645 ms | 0 - 17 MB | NPU | Stable-Diffusion-v2.1.onnx |
TextEncoderQuantizable | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.825 ms | 0 - 0 MB | NPU | Use Export Script |
TextEncoderQuantizable | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.871 ms | 379 - 379 MB | NPU | Stable-Diffusion-v2.1.onnx |
UnetQuantizable | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 241.356 ms | 0 - 8 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 97.392 ms | 0 - 2 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 92.092 ms | 0 - 8 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 241.356 ms | 0 - 8 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 97.131 ms | 0 - 3 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 96.898 ms | 0 - 2 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 92.092 ms | 0 - 8 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 97.553 ms | 0 - 2 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 98.826 ms | 0 - 899 MB | NPU | Stable-Diffusion-v2.1.onnx |
UnetQuantizable | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 68.634 ms | 0 - 18 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 69.452 ms | 0 - 15 MB | NPU | Stable-Diffusion-v2.1.onnx |
UnetQuantizable | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 54.891 ms | 0 - 14 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 55.714 ms | 0 - 14 MB | NPU | Stable-Diffusion-v2.1.onnx |
UnetQuantizable | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 98.95 ms | 0 - 0 MB | NPU | Use Export Script |
UnetQuantizable | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 99.028 ms | 842 - 842 MB | NPU | Stable-Diffusion-v2.1.onnx |
VaeDecoderQuantizable | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 720.854 ms | 1 - 10 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 277.796 ms | 0 - 3 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 250.265 ms | 0 - 12 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 720.854 ms | 1 - 10 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 266.863 ms | 0 - 2 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 267.2 ms | 0 - 2 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 250.265 ms | 0 - 12 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 273.257 ms | 0 - 2 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 274.053 ms | 0 - 68 MB | NPU | Stable-Diffusion-v2.1.onnx |
VaeDecoderQuantizable | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 204.145 ms | 0 - 18 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 207.419 ms | 3 - 22 MB | NPU | Stable-Diffusion-v2.1.onnx |
VaeDecoderQuantizable | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 192.667 ms | 0 - 15 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 188.928 ms | 3 - 17 MB | NPU | Stable-Diffusion-v2.1.onnx |
VaeDecoderQuantizable | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 266.015 ms | 0 - 0 MB | NPU | Use Export Script |
VaeDecoderQuantizable | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 266.931 ms | 63 - 63 MB | NPU | Stable-Diffusion-v2.1.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[stable-diffusion-v2-1-quantized]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.export
Profiling Results
------------------------------------------------------------
TextEncoderQuantizable
Device : cs_8275 (ANDROID 14)
Runtime : QNN
Estimated inference time (ms) : 15.9
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 971
Compute Unit(s) : npu (971 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
UnetQuantizable
Device : cs_8275 (ANDROID 14)
Runtime : QNN
Estimated inference time (ms) : 241.4
Estimated peak memory usage (MB): [0, 8]
Total # Ops : 5783
Compute Unit(s) : npu (5783 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
VaeDecoderQuantizable
Device : cs_8275 (ANDROID 14)
Runtime : QNN
Estimated inference time (ms) : 720.9
Estimated peak memory usage (MB): [1, 10]
Total # Ops : 189
Compute Unit(s) : npu (189 ops) gpu (0 ops) cpu (0 ops)
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v2.1's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Stable-Diffusion-v2.1 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.