File size: 10,651 Bytes
96b5fbc
 
 
 
 
 
 
c4c83a9
96b5fbc
 
 
 
 
 
 
 
35a51e7
96b5fbc
 
a292a02
35a51e7
 
96b5fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8576be4
 
cbc2125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b5fbc
bd49f90
 
 
96b5fbc
 
 
f16cd6d
96b5fbc
01d1834
96b5fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d1834
96b5fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8576be4
 
01d1834
8576be4
 
cbc2125
 
01d1834
 
8576be4
 
01d1834
8576be4
 
cbc2125
01d1834
 
 
8576be4
 
01d1834
8576be4
 
cbc2125
 
01d1834
 
96b5fbc
bd49f90
 
96b5fbc
 
bd49f90
96b5fbc
 
 
 
 
 
 
 
 
01d1834
96b5fbc
01d1834
96b5fbc
 
 
 
 
 
8576be4
96b5fbc
f16cd6d
 
8576be4
 
 
96b5fbc
 
 
 
 
8576be4
 
96b5fbc
76cab13
96b5fbc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
library_name: pytorch
license: creativeml-openrail-m
tags:
- generative_ai
- quantized
- android
pipeline_tag: unconditional-image-generation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/stable_diffusion_v2_1_quantized/web-assets/model_demo.png)

# Stable-Diffusion-v2.1: Optimized for Mobile Deployment
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions


Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

This model is an implementation of Stable-Diffusion-v2.1 found [here](https://github.com/CompVis/stable-diffusion/tree/main).


This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized).


### Model Details

- **Model Type:** Image generation
- **Model Stats:**
  - Input: Text prompt to generate image
  - Text Encoder Number of parameters: 340M
  - UNet Number of parameters: 865M
  - VAE Decoder Number of parameters: 83M
  - Model size: 1GB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TextEncoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.666 ms | 0 - 3 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoderQuantizable.so) |
| TextEncoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.647 ms | 0 - 20 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoderQuantizable.so) |
| TextEncoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.2 ms | 0 - 15 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.84 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA7255P ADP | SA7255P | QNN | 88.113 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.62 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.654 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA8775P ADP | SA8775P | QNN | 7.869 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 88.113 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.636 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 7.869 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 96.977 ms | 0 - 3 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UnetQuantizable.so) |
| UnetQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 69.178 ms | 0 - 17 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UnetQuantizable.so) |
| UnetQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 61.668 ms | 0 - 14 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 99.461 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA7255P ADP | SA7255P | QNN | 1467.935 ms | 0 - 7 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 98.746 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 97.177 ms | 1 - 3 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA8775P ADP | SA8775P | QNN | 110.665 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 1467.935 ms | 0 - 7 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 97.457 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 110.665 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 295.307 ms | 0 - 71 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/VaeDecoderQuantizable.so) |
| VaeDecoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 223.33 ms | 0 - 312 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/VaeDecoderQuantizable.so) |
| VaeDecoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 189.418 ms | 0 - 356 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 267.095 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA7255P ADP | SA7255P | QNN | 4460.526 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 274.71 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 269.652 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA8775P ADP | SA8775P | QNN | 301.141 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 4460.526 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 271.222 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 301.141 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[stable-diffusion-v2-1-quantized]" -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.export
```
```
Profiling Results
------------------------------------------------------------
TextEncoderQuantizable
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 6.7                    
Estimated peak memory usage (MB): [0, 3]                 
Total # Ops                     : 787                    
Compute Unit(s)                 : NPU (787 ops)          

------------------------------------------------------------
UnetQuantizable
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 97.0                   
Estimated peak memory usage (MB): [0, 3]                 
Total # Ops                     : 5891                   
Compute Unit(s)                 : NPU (5891 ops)         

------------------------------------------------------------
VaeDecoderQuantizable
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 295.3                  
Estimated peak memory usage (MB): [0, 71]                
Total # Ops                     : 189                    
Compute Unit(s)                 : NPU (189 ops)          
```





## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v2.1's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Stable-Diffusion-v2.1 can be found
  [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)



## References
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).