File size: 10,651 Bytes
96b5fbc c4c83a9 96b5fbc 35a51e7 96b5fbc a292a02 35a51e7 96b5fbc 8576be4 cbc2125 96b5fbc bd49f90 96b5fbc f16cd6d 96b5fbc 01d1834 96b5fbc 01d1834 96b5fbc 8576be4 01d1834 8576be4 cbc2125 01d1834 8576be4 01d1834 8576be4 cbc2125 01d1834 8576be4 01d1834 8576be4 cbc2125 01d1834 96b5fbc bd49f90 96b5fbc bd49f90 96b5fbc 01d1834 96b5fbc 01d1834 96b5fbc 8576be4 96b5fbc f16cd6d 8576be4 96b5fbc 8576be4 96b5fbc 76cab13 96b5fbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
library_name: pytorch
license: creativeml-openrail-m
tags:
- generative_ai
- quantized
- android
pipeline_tag: unconditional-image-generation
---

# Stable-Diffusion-v2.1: Optimized for Mobile Deployment
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v2.1 found [here](https://github.com/CompVis/stable-diffusion/tree/main).
This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized).
### Model Details
- **Model Type:** Image generation
- **Model Stats:**
- Input: Text prompt to generate image
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- Model size: 1GB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TextEncoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.666 ms | 0 - 3 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoderQuantizable.so) |
| TextEncoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.647 ms | 0 - 20 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/TextEncoderQuantizable.so) |
| TextEncoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.2 ms | 0 - 15 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.84 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA7255P ADP | SA7255P | QNN | 88.113 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.62 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.654 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | SA8775P ADP | SA8775P | QNN | 7.869 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 88.113 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.636 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| TextEncoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 7.869 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 96.977 ms | 0 - 3 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UnetQuantizable.so) |
| UnetQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 69.178 ms | 0 - 17 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/UnetQuantizable.so) |
| UnetQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 61.668 ms | 0 - 14 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 99.461 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA7255P ADP | SA7255P | QNN | 1467.935 ms | 0 - 7 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 98.746 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 97.177 ms | 1 - 3 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | SA8775P ADP | SA8775P | QNN | 110.665 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 1467.935 ms | 0 - 7 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 97.457 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| UnetQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 110.665 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 295.307 ms | 0 - 71 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/VaeDecoderQuantizable.so) |
| VaeDecoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 223.33 ms | 0 - 312 MB | W8A16 | NPU | [Stable-Diffusion-v2.1.so](https://huggingface.co/qualcomm/Stable-Diffusion-v2.1/blob/main/VaeDecoderQuantizable.so) |
| VaeDecoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 189.418 ms | 0 - 356 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 267.095 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA7255P ADP | SA7255P | QNN | 4460.526 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 274.71 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 269.652 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | SA8775P ADP | SA8775P | QNN | 301.141 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 4460.526 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 271.222 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
| VaeDecoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 301.141 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[stable-diffusion-v2-1-quantized]" -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.export
```
```
Profiling Results
------------------------------------------------------------
TextEncoderQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 6.7
Estimated peak memory usage (MB): [0, 3]
Total # Ops : 787
Compute Unit(s) : NPU (787 ops)
------------------------------------------------------------
UnetQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 97.0
Estimated peak memory usage (MB): [0, 3]
Total # Ops : 5891
Compute Unit(s) : NPU (5891 ops)
------------------------------------------------------------
VaeDecoderQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 295.3
Estimated peak memory usage (MB): [0, 71]
Total # Ops : 189
Compute Unit(s) : NPU (189 ops)
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v2.1's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Stable-Diffusion-v2.1 can be found
[here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)
## References
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|