|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- AI-MO/NuminaMath-TIR |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
base_model: |
|
- Qwen/Qwen2.5-0.5B-Instruct |
|
--- |
|
# NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR |
|
|
|
## Overview |
|
|
|
This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5. |
|
|
|
The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273 |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR") |
|
model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR") |
|
|
|
# Example input |
|
prompt = "What is the capital of France?" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
# Generate output |
|
outputs = model.generate(**inputs, max_new_tokens=50) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |