metadata
license: apache-2.0
datasets:
- AI-MO/NuminaMath-TIR
language:
- en
metrics:
- accuracy
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR
Overview
This is the Hugging Face checkpoint of Qwen2.5-0.5B-Instruct-MemoryR, a memory-augmented RL-tuned model based on Qwen2.5.
The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
# Example input
prompt = "What is the capital of France?"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))