--- license: apache-2.0 datasets: - AI-MO/NuminaMath-TIR language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara metrics: - accuracy base_model: - Qwen/Qwen2.5-0.5B-Instruct --- # NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR ## Overview This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5. The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273 ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR") model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR") # Example input prompt = "What is the capital of France?" inputs = tokenizer(prompt, return_tensors="pt") # Generate output outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```