|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:583058 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Alibaba-NLP/gte-multilingual-base |
|
widget: |
|
- source_sentence: 'Pre-Emphasis (PE) |
|
|
|
A pre-emphasis filter is applied to the framed offset-free input signal: |
|
|
|
|
|
)1 |
|
|
|
(' |
|
sentences: |
|
- 'Windowing (W) |
|
|
|
A Hamming window of length N is applied to the output of the pre-emphasis block: |
|
|
|
|
|
( |
|
|
|
) |
|
|
|
N |
|
|
|
n |
|
|
|
n |
|
|
|
s |
|
|
|
N |
|
|
|
n |
|
|
|
n |
|
|
|
s |
|
|
|
pe |
|
|
|
w |
|
|
|
≤ |
|
|
|
≤ |
|
|
|
× |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
− |
|
|
|
× |
|
|
|
− |
|
|
|
=' |
|
- 'Group or broadcast call, called mobile stations (GSM only) |
|
|
|
Within each set of voice group call or voice broadcast call attributes stored |
|
in the GCR as defined in 3GPP TS 43.068 |
|
|
|
and 3GPP TS 43.069, respectively, a priority level is included if eMLPP is applied. |
|
The priority level will be provided |
|
|
|
by the GCR to the MSC together with the call attributes. |
|
|
|
The priority level shall be indicated together with the related notification messages |
|
and treated in the mobile station as |
|
|
|
defined in 3GPP TS 43.0' |
|
- 'Description of the access technology indicator mechanism |
|
|
|
This clause describes the mechanisms that can be employed to indicate access technology |
|
specific dependencies in a |
|
|
|
multi-access technology environment. |
|
|
|
There are cases where toolkit applications need to know which access technology |
|
the terminal is currently in so that it |
|
|
|
can issue access technology dependent commands as well as determine that the response |
|
to a particular command is |
|
|
|
technology dependent. Setting up the event, ACCESS TECHNOL' |
|
- source_sentence: 'Distribution of DL delay between NG-RAN and UE |
|
|
|
a) This measurement provides the distribution of DL packet delay between NG-RAN |
|
and UE, which is the delay |
|
|
|
incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and |
|
the delay over Uu |
|
|
|
interface. This measurement is split into subcounters per 5QI and subcounters |
|
per S-NSSAI. |
|
|
|
b) DER (n=1). |
|
|
|
|
|
ETSI |
|
|
|
ETSI TS 128 552 V16.18.0 (2024-08)' |
|
sentences: |
|
- 'Distribution of UL delay between NG-RAN and UE |
|
|
|
a) This measurement provides the distribution of UL packet delay between NG-RAN |
|
and UE, which is the delay |
|
|
|
incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and |
|
the delay over Uu |
|
|
|
interface. This measurement is split into subcounters per 5QI and subcounters |
|
per S-NSSAI. |
|
|
|
b) DER (n=1). |
|
|
|
c) The measurement is obtained by the following method: |
|
|
|
|
|
The gNB performs the GTP PDU packet delay measurement for QoS monitoring per the |
|
GTP ' |
|
- 'Subscriber data |
|
|
|
Subscription to MExE services shall be logically separate to subscription of network |
|
services. A subscriber may have a |
|
|
|
MExE subscription to multiple MExE service providers. It may also be possible |
|
for the subscriber to interrogate such |
|
|
|
subscription registration (with a suitable means of authorisation), depending |
|
on PLMN support.' |
|
- 'MSC for LMU Control |
|
|
|
When a control message has to be routed to an LMU from an SMLC, the SMLC addresses |
|
the serving MSC for the |
|
|
|
LMU using an E.164 address. |
|
|
|
|
|
ETSI |
|
|
|
ETSI TS 129 002 V10.6.0 (2012-04)' |
|
- source_sentence: 'Enter SMS Block Mode Protocol +CESP |
|
|
|
Table 3.2.4-1: +CESP Action Command Syntax |
|
|
|
Command |
|
|
|
Possible response(s) |
|
|
|
+CESP |
|
|
|
|
|
+CESP=? |
|
|
|
|
|
|
|
Description |
|
|
|
Execution command sets the TA in SMS block protocol mode. The TA shall return |
|
OK (or 0) to confirm acceptance of |
|
|
|
the command prior to entering the block mode (see clause 2.1.1). The final result |
|
code OK (or 0) shall be returned when |
|
|
|
the block mode is exited. |
|
|
|
NOTE: |
|
|
|
Commands following +CESP in the AT command line must not be processed by the TA. |
|
|
|
Implementation |
|
|
|
Ma' |
|
sentences: |
|
- 'SGSN |
|
|
|
To support NBIFOM, the SGSN needs to be capable to: |
|
|
|
|
|
ETSI |
|
|
|
ETSI TS 123 161 V14.0.0 (2017-05)' |
|
- 'Message Service Failure Result Code +CMS ERROR |
|
|
|
Final result code +CMS ERROR: <err> indicates an error related to mobile equipment |
|
or network. The operation is |
|
|
|
similar to ERROR final result code. None of the following commands in the same |
|
command line is executed. Neither |
|
|
|
ERROR nor OK final result code shall be returned. ERROR is returned normally when |
|
error is related to syntax or invalid |
|
|
|
parameters. |
|
|
|
Defined Values |
|
|
|
<err> values used by common messaging commands:' |
|
- 'C |
|
|
|
C |
|
|
|
- |
|
|
|
- |
|
|
|
P |
|
|
|
Service Priority Level' |
|
- source_sentence: 'Definition |
|
|
|
Cell synchronization accuracy is defined as the maximum deviation in frame start |
|
times between any pair of cells on the |
|
|
|
same frequency that have overlapping coverage areas.' |
|
sentences: |
|
- 'Minimum requirements |
|
|
|
The cell synchronization accuracy shall be better than or equal to 3μs.' |
|
- "Subsequent Inter-MSC Handover to third MSC\nWhen a Mobile Station is being handed\ |
|
\ over to a third MSC, the procedure (described in GSM 03.09)\ndoes require one\ |
|
\ specific interworking case in MSC-A (figure 20) between E-Interface from MSC-B\ |
|
\ and E-\nInterface from MSC-B' other than the combination of the ones described\ |
|
\ in the chapter 4.5.1 and 4.5.2.\n%66\x10$\x03\x03\x03\x03\x03\x0306&\x10%\x03\ |
|
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10$\x03\ |
|
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10%\n_\x03\x03\x03\x03\x03\x03\ |
|
\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\ |
|
\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\ |
|
\x03\x03\x03\x03_\n_+$1'29(5\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\ |
|
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03" |
|
- 'DL Total PRB Usage |
|
|
|
a) This measurement provides the total usage (in percentage) of physical resource |
|
blocks (PRBs) on the downlink |
|
|
|
for any purpose. |
|
|
|
b) SI |
|
|
|
c) This measurement is obtained as: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∗ |
|
|
|
=' |
|
- source_sentence: Carrier aggregation measurement accuracy |
|
sentences: |
|
- 'PUCCH / PUSCH / SRS time mask |
|
|
|
The PUCCH/PUSCH/SRS time mask defines the observation period between sounding |
|
reference symbol (SRS) and an |
|
|
|
adjacent PUSCH/PUCCH symbol and subsequent sub-frame. |
|
|
|
There are no additional requirements on UE transmit power beyond that which is |
|
required in subclause 6.2.2 and |
|
|
|
subclause 6.6.2.3 |
|
|
|
|
|
ETSI |
|
|
|
ETSI TS 136 101 V9.16.0 (2013-07)' |
|
- 'Reference Signal Time Difference (RSTD) Measurement Accuracy |
|
|
|
Requirements for Carrier Aggregation |
|
|
|
A.8 |
|
|
|
UE Measurements Procedures |
|
|
|
A.9 |
|
|
|
Measurement Performance Requirements |
|
|
|
NOTE: |
|
|
|
Only requirements and test cases in this table defined for inter-band carrier |
|
aggregation shall apply. |
|
|
|
|
|
|
|
ETSI |
|
|
|
ETSI TS 136 307 V10.17.0 (2016-01)' |
|
- 'Operator control |
|
|
|
Three general architectures are candidates to offer energy savings functionalities: |
|
|
|
Distributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6]. |
|
|
|
Energy savings in cells can be initiated in several different ways. Some of the |
|
mechanisms are: |
|
|
|
For NM-centralized architecture |
|
|
|
- |
|
|
|
IRPManager instructs the cells to move to energySaving state (e.g. according to |
|
a schedule determined by |
|
|
|
network statistics) , configures trigger points (e.g. load threshold crossing) |
|
when it want' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("lucian-li/my_new_model") |
|
# Run inference |
|
sentences = [ |
|
'Carrier aggregation measurement accuracy', |
|
'Reference Signal Time Difference (RSTD) Measurement Accuracy\nRequirements for Carrier Aggregation\nA.8\nUE Measurements Procedures\nA.9\nMeasurement Performance Requirements\nNOTE:\nOnly requirements and test cases in this table defined for inter-band carrier aggregation shall apply.\n\n\nETSI\nETSI TS 136 307 V10.17.0 (2016-01)', |
|
'Operator control\nThree general architectures are candidates to offer energy savings functionalities:\nDistributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].\nEnergy savings in cells can be initiated in several different ways. Some of the mechanisms are:\nFor NM-centralized architecture\n-\nIRPManager instructs the cells to move to energySaving state (e.g. according to a schedule determined by\nnetwork statistics) , configures trigger points (e.g. load threshold crossing) when it want', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 583,058 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 85.73 tokens</li><li>max: 229 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 85.86 tokens</li><li>max: 229 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Triggering Optimization Function (TG_F)<br>This functional bloc supports the following functions: [SO2], [SO3].</code> | <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code> | |
|
| <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code> | <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> | |
|
| <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> | <code>NRM IRP Update Function (NRM_UF)<br>This function updates the E-UTRAN and EPC NRM IRP with the optimization modification if needed.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 11 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 11 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | |
|
|:------:|:-----:|:-------------:| |
|
| 0.0019 | 100 | 0.8198 | |
|
| 0.0038 | 200 | 0.7651 | |
|
| 0.0057 | 300 | 0.6659 | |
|
| 0.0075 | 400 | 0.6404 | |
|
| 0.0094 | 500 | 0.5638 | |
|
| 0.0113 | 600 | 0.5184 | |
|
| 0.0132 | 700 | 0.448 | |
|
| 0.0151 | 800 | 0.4464 | |
|
| 0.0170 | 900 | 0.3461 | |
|
| 0.0189 | 1000 | 0.3731 | |
|
| 0.0208 | 1100 | 0.343 | |
|
| 0.0226 | 1200 | 0.3557 | |
|
| 0.0245 | 1300 | 0.3623 | |
|
| 0.0264 | 1400 | 0.2941 | |
|
| 0.0283 | 1500 | 0.3153 | |
|
| 0.0302 | 1600 | 0.2724 | |
|
| 0.0321 | 1700 | 0.2702 | |
|
| 0.0340 | 1800 | 0.2934 | |
|
| 0.0358 | 1900 | 0.2255 | |
|
| 0.0377 | 2000 | 0.2519 | |
|
| 0.0396 | 2100 | 0.2424 | |
|
| 0.0415 | 2200 | 0.1883 | |
|
| 0.0434 | 2300 | 0.2428 | |
|
| 0.0453 | 2400 | 0.2212 | |
|
| 0.0472 | 2500 | 0.1862 | |
|
| 0.0491 | 2600 | 0.2451 | |
|
| 0.0509 | 2700 | 0.2336 | |
|
| 0.0528 | 2800 | 0.225 | |
|
| 0.0547 | 2900 | 0.2154 | |
|
| 0.0566 | 3000 | 0.1907 | |
|
| 0.0585 | 3100 | 0.2514 | |
|
| 0.0604 | 3200 | 0.2082 | |
|
| 0.0623 | 3300 | 0.2076 | |
|
| 0.0641 | 3400 | 0.1818 | |
|
| 0.0660 | 3500 | 0.1688 | |
|
| 0.0679 | 3600 | 0.2261 | |
|
| 0.0698 | 3700 | 0.2108 | |
|
| 0.0717 | 3800 | 0.1732 | |
|
| 0.0736 | 3900 | 0.1764 | |
|
| 0.0755 | 4000 | 0.1481 | |
|
| 0.0773 | 4100 | 0.1687 | |
|
| 0.0792 | 4200 | 0.1897 | |
|
| 0.0811 | 4300 | 0.1685 | |
|
| 0.0830 | 4400 | 0.1915 | |
|
| 0.0849 | 4500 | 0.2013 | |
|
| 0.0868 | 4600 | 0.1701 | |
|
| 0.0887 | 4700 | 0.2006 | |
|
| 0.0906 | 4800 | 0.2006 | |
|
| 0.0924 | 4900 | 0.1617 | |
|
| 0.0943 | 5000 | 0.1406 | |
|
| 0.0962 | 5100 | 0.1456 | |
|
| 0.0981 | 5200 | 0.1703 | |
|
| 0.1000 | 5300 | 0.1464 | |
|
| 0.1019 | 5400 | 0.1803 | |
|
| 0.1038 | 5500 | 0.1346 | |
|
| 0.1056 | 5600 | 0.134 | |
|
| 0.1075 | 5700 | 0.1567 | |
|
| 0.1094 | 5800 | 0.163 | |
|
| 0.1113 | 5900 | 0.1544 | |
|
| 0.1132 | 6000 | 0.1648 | |
|
| 0.1151 | 6100 | 0.1505 | |
|
| 0.1170 | 6200 | 0.1231 | |
|
| 0.1189 | 6300 | 0.1591 | |
|
| 0.1207 | 6400 | 0.1533 | |
|
| 0.1226 | 6500 | 0.1376 | |
|
| 0.1245 | 6600 | 0.1473 | |
|
| 0.1264 | 6700 | 0.1405 | |
|
| 0.1283 | 6800 | 0.141 | |
|
| 0.1302 | 6900 | 0.1105 | |
|
| 0.1321 | 7000 | 0.1712 | |
|
| 0.1339 | 7100 | 0.1534 | |
|
| 0.1358 | 7200 | 0.1578 | |
|
| 0.1377 | 7300 | 0.1101 | |
|
| 0.1396 | 7400 | 0.128 | |
|
| 0.1415 | 7500 | 0.1679 | |
|
| 0.1434 | 7600 | 0.1592 | |
|
| 0.1453 | 7700 | 0.1383 | |
|
| 0.1472 | 7800 | 0.1274 | |
|
| 0.1490 | 7900 | 0.1616 | |
|
| 0.1509 | 8000 | 0.1617 | |
|
| 0.1528 | 8100 | 0.1361 | |
|
| 0.1547 | 8200 | 0.1268 | |
|
| 0.1566 | 8300 | 0.1286 | |
|
| 0.1585 | 8400 | 0.1253 | |
|
| 0.1604 | 8500 | 0.1157 | |
|
| 0.1622 | 8600 | 0.1499 | |
|
| 0.1641 | 8700 | 0.1398 | |
|
| 0.1660 | 8800 | 0.1188 | |
|
| 0.1679 | 8900 | 0.1103 | |
|
| 0.1698 | 9000 | 0.1217 | |
|
| 0.1717 | 9100 | 0.1144 | |
|
| 0.1736 | 9200 | 0.1203 | |
|
| 0.1755 | 9300 | 0.1074 | |
|
| 0.1773 | 9400 | 0.1145 | |
|
| 0.1792 | 9500 | 0.1035 | |
|
| 0.1811 | 9600 | 0.1406 | |
|
| 0.1830 | 9700 | 0.1465 | |
|
| 0.1849 | 9800 | 0.1169 | |
|
| 0.1868 | 9900 | 0.1115 | |
|
| 0.1887 | 10000 | 0.1207 | |
|
| 0.1905 | 10100 | 0.1191 | |
|
| 0.1924 | 10200 | 0.1099 | |
|
| 0.1943 | 10300 | 0.1309 | |
|
| 0.1962 | 10400 | 0.1092 | |
|
| 0.1981 | 10500 | 0.1075 | |
|
| 0.2000 | 10600 | 0.1174 | |
|
| 0.2019 | 10700 | 0.1103 | |
|
| 0.2038 | 10800 | 0.1077 | |
|
| 0.2056 | 10900 | 0.0844 | |
|
| 0.2075 | 11000 | 0.1093 | |
|
| 0.2094 | 11100 | 0.1428 | |
|
| 0.2113 | 11200 | 0.0928 | |
|
| 0.2132 | 11300 | 0.1039 | |
|
| 0.2151 | 11400 | 0.1436 | |
|
| 0.2170 | 11500 | 0.1197 | |
|
| 0.2188 | 11600 | 0.1249 | |
|
| 0.2207 | 11700 | 0.0856 | |
|
| 0.2226 | 11800 | 0.1126 | |
|
| 0.2245 | 11900 | 0.1028 | |
|
| 0.2264 | 12000 | 0.0988 | |
|
| 0.2283 | 12100 | 0.1031 | |
|
| 0.2302 | 12200 | 0.101 | |
|
| 0.2320 | 12300 | 0.1188 | |
|
| 0.2339 | 12400 | 0.0908 | |
|
| 0.2358 | 12500 | 0.069 | |
|
| 0.2377 | 12600 | 0.1099 | |
|
| 0.2396 | 12700 | 0.1227 | |
|
| 0.2415 | 12800 | 0.0794 | |
|
| 0.2434 | 12900 | 0.0969 | |
|
| 0.2453 | 13000 | 0.0864 | |
|
| 0.2471 | 13100 | 0.1193 | |
|
| 0.2490 | 13200 | 0.0824 | |
|
| 0.2509 | 13300 | 0.12 | |
|
| 0.2528 | 13400 | 0.0928 | |
|
| 0.2547 | 13500 | 0.1126 | |
|
| 0.2566 | 13600 | 0.0912 | |
|
| 0.2585 | 13700 | 0.1126 | |
|
| 0.2603 | 13800 | 0.078 | |
|
| 0.2622 | 13900 | 0.0715 | |
|
| 0.2641 | 14000 | 0.1095 | |
|
| 0.2660 | 14100 | 0.089 | |
|
| 0.2679 | 14200 | 0.0926 | |
|
| 0.2698 | 14300 | 0.086 | |
|
| 0.2717 | 14400 | 0.1115 | |
|
| 0.2736 | 14500 | 0.0996 | |
|
| 0.2754 | 14600 | 0.1014 | |
|
| 0.2773 | 14700 | 0.1033 | |
|
| 0.2792 | 14800 | 0.0732 | |
|
| 0.2811 | 14900 | 0.0994 | |
|
| 0.2830 | 15000 | 0.0872 | |
|
| 0.2849 | 15100 | 0.0923 | |
|
| 0.2868 | 15200 | 0.111 | |
|
| 0.2886 | 15300 | 0.0891 | |
|
| 0.2905 | 15400 | 0.0868 | |
|
| 0.2924 | 15500 | 0.0773 | |
|
| 0.2943 | 15600 | 0.0918 | |
|
| 0.2962 | 15700 | 0.0726 | |
|
| 0.2981 | 15800 | 0.0951 | |
|
| 0.3000 | 15900 | 0.0835 | |
|
| 0.3019 | 16000 | 0.083 | |
|
| 0.3037 | 16100 | 0.095 | |
|
| 0.3056 | 16200 | 0.0722 | |
|
| 0.3075 | 16300 | 0.1061 | |
|
| 0.3094 | 16400 | 0.0902 | |
|
| 0.3113 | 16500 | 0.0978 | |
|
| 0.3132 | 16600 | 0.0983 | |
|
| 0.3151 | 16700 | 0.0808 | |
|
| 0.3169 | 16800 | 0.0758 | |
|
| 0.3188 | 16900 | 0.071 | |
|
| 0.3207 | 17000 | 0.0918 | |
|
| 0.3226 | 17100 | 0.1011 | |
|
| 0.3245 | 17200 | 0.079 | |
|
| 0.3264 | 17300 | 0.0992 | |
|
| 0.3283 | 17400 | 0.1089 | |
|
| 0.3302 | 17500 | 0.0904 | |
|
| 0.3320 | 17600 | 0.0956 | |
|
| 0.3339 | 17700 | 0.0747 | |
|
| 0.3358 | 17800 | 0.0961 | |
|
| 0.3377 | 17900 | 0.0923 | |
|
| 0.3396 | 18000 | 0.1114 | |
|
| 0.3415 | 18100 | 0.0689 | |
|
| 0.3434 | 18200 | 0.1308 | |
|
| 0.3452 | 18300 | 0.0923 | |
|
| 0.3471 | 18400 | 0.0756 | |
|
| 0.3490 | 18500 | 0.0842 | |
|
| 0.3509 | 18600 | 0.0859 | |
|
| 0.3528 | 18700 | 0.0903 | |
|
| 0.3547 | 18800 | 0.084 | |
|
| 0.3566 | 18900 | 0.0923 | |
|
| 0.3584 | 19000 | 0.0848 | |
|
| 0.3603 | 19100 | 0.0812 | |
|
| 0.3622 | 19200 | 0.0872 | |
|
| 0.3641 | 19300 | 0.083 | |
|
| 0.3660 | 19400 | 0.0826 | |
|
| 0.3679 | 19500 | 0.101 | |
|
| 0.3698 | 19600 | 0.0804 | |
|
| 0.3717 | 19700 | 0.0676 | |
|
| 0.3735 | 19800 | 0.0836 | |
|
| 0.3754 | 19900 | 0.0711 | |
|
| 0.3773 | 20000 | 0.0825 | |
|
| 0.3792 | 20100 | 0.0835 | |
|
| 0.3811 | 20200 | 0.0816 | |
|
| 0.3830 | 20300 | 0.0812 | |
|
| 0.3849 | 20400 | 0.0689 | |
|
| 0.3867 | 20500 | 0.0627 | |
|
| 0.3886 | 20600 | 0.0965 | |
|
| 0.3905 | 20700 | 0.0632 | |
|
| 0.3924 | 20800 | 0.0945 | |
|
| 0.3943 | 20900 | 0.0923 | |
|
| 0.3962 | 21000 | 0.0833 | |
|
| 0.3981 | 21100 | 0.0537 | |
|
| 0.4000 | 21200 | 0.0822 | |
|
| 0.4018 | 21300 | 0.0684 | |
|
| 0.4037 | 21400 | 0.0807 | |
|
| 0.4056 | 21500 | 0.0945 | |
|
| 0.4075 | 21600 | 0.0981 | |
|
| 0.4094 | 21700 | 0.0748 | |
|
| 0.4113 | 21800 | 0.0943 | |
|
| 0.4132 | 21900 | 0.0709 | |
|
| 0.4150 | 22000 | 0.0551 | |
|
| 0.4169 | 22100 | 0.0679 | |
|
| 0.4188 | 22200 | 0.0666 | |
|
| 0.4207 | 22300 | 0.0976 | |
|
| 0.4226 | 22400 | 0.0666 | |
|
| 0.4245 | 22500 | 0.0651 | |
|
| 0.4264 | 22600 | 0.0803 | |
|
| 0.4283 | 22700 | 0.068 | |
|
| 0.4301 | 22800 | 0.0541 | |
|
| 0.4320 | 22900 | 0.0487 | |
|
| 0.4339 | 23000 | 0.091 | |
|
| 0.4358 | 23100 | 0.074 | |
|
| 0.4377 | 23200 | 0.0733 | |
|
| 0.4396 | 23300 | 0.0845 | |
|
| 0.4415 | 23400 | 0.0823 | |
|
| 0.4433 | 23500 | 0.0561 | |
|
| 0.4452 | 23600 | 0.0508 | |
|
| 0.4471 | 23700 | 0.074 | |
|
| 0.4490 | 23800 | 0.0683 | |
|
| 0.4509 | 23900 | 0.0797 | |
|
| 0.4528 | 24000 | 0.0561 | |
|
| 0.4547 | 24100 | 0.0744 | |
|
| 0.4566 | 24200 | 0.0638 | |
|
| 0.4584 | 24300 | 0.0633 | |
|
| 0.4603 | 24400 | 0.062 | |
|
| 0.4622 | 24500 | 0.0887 | |
|
| 0.4641 | 24600 | 0.0908 | |
|
| 0.4660 | 24700 | 0.0654 | |
|
| 0.4679 | 24800 | 0.0522 | |
|
| 0.4698 | 24900 | 0.0851 | |
|
| 0.4716 | 25000 | 0.0763 | |
|
| 0.4735 | 25100 | 0.0623 | |
|
| 0.4754 | 25200 | 0.0712 | |
|
| 0.4773 | 25300 | 0.0866 | |
|
| 0.4792 | 25400 | 0.0812 | |
|
| 0.4811 | 25500 | 0.0706 | |
|
| 0.4830 | 25600 | 0.0734 | |
|
| 0.4849 | 25700 | 0.068 | |
|
| 0.4867 | 25800 | 0.111 | |
|
| 0.4886 | 25900 | 0.0627 | |
|
| 0.4905 | 26000 | 0.0459 | |
|
| 0.4924 | 26100 | 0.0794 | |
|
| 0.4943 | 26200 | 0.0547 | |
|
| 0.4962 | 26300 | 0.0779 | |
|
| 0.4981 | 26400 | 0.0609 | |
|
| 0.4999 | 26500 | 0.0785 | |
|
| 0.5018 | 26600 | 0.0722 | |
|
| 0.5037 | 26700 | 0.0585 | |
|
| 0.5056 | 26800 | 0.0572 | |
|
| 0.5075 | 26900 | 0.0636 | |
|
| 0.5094 | 27000 | 0.0642 | |
|
| 0.5113 | 27100 | 0.0606 | |
|
| 0.5131 | 27200 | 0.0725 | |
|
| 0.5150 | 27300 | 0.0664 | |
|
| 0.5169 | 27400 | 0.0933 | |
|
| 0.5188 | 27500 | 0.0486 | |
|
| 0.5207 | 27600 | 0.0514 | |
|
| 0.5226 | 27700 | 0.0779 | |
|
| 0.5245 | 27800 | 0.0614 | |
|
| 0.5264 | 27900 | 0.0646 | |
|
| 0.5282 | 28000 | 0.0606 | |
|
| 0.5301 | 28100 | 0.0453 | |
|
| 0.5320 | 28200 | 0.0749 | |
|
| 0.5339 | 28300 | 0.0695 | |
|
| 0.5358 | 28400 | 0.0897 | |
|
| 0.5377 | 28500 | 0.0612 | |
|
| 0.5396 | 28600 | 0.0542 | |
|
| 0.5414 | 28700 | 0.0504 | |
|
| 0.5433 | 28800 | 0.0539 | |
|
| 0.5452 | 28900 | 0.0584 | |
|
| 0.5471 | 29000 | 0.0552 | |
|
| 0.5490 | 29100 | 0.076 | |
|
| 0.5509 | 29200 | 0.0861 | |
|
| 0.5528 | 29300 | 0.067 | |
|
| 0.5547 | 29400 | 0.0887 | |
|
| 0.5565 | 29500 | 0.059 | |
|
| 0.5584 | 29600 | 0.0484 | |
|
| 0.5603 | 29700 | 0.0703 | |
|
| 0.5622 | 29800 | 0.0802 | |
|
| 0.5641 | 29900 | 0.0805 | |
|
| 0.5660 | 30000 | 0.0737 | |
|
| 0.5679 | 30100 | 0.0518 | |
|
| 0.5697 | 30200 | 0.0517 | |
|
| 0.5716 | 30300 | 0.0806 | |
|
| 0.5735 | 30400 | 0.0586 | |
|
| 0.5754 | 30500 | 0.0491 | |
|
| 0.5773 | 30600 | 0.0591 | |
|
| 0.5792 | 30700 | 0.066 | |
|
| 0.5811 | 30800 | 0.0419 | |
|
| 0.5830 | 30900 | 0.0517 | |
|
| 0.5848 | 31000 | 0.0539 | |
|
| 0.5867 | 31100 | 0.0845 | |
|
| 0.5886 | 31200 | 0.044 | |
|
| 0.5905 | 31300 | 0.0597 | |
|
| 0.5924 | 31400 | 0.0556 | |
|
| 0.5943 | 31500 | 0.0724 | |
|
| 0.5962 | 31600 | 0.0465 | |
|
| 0.5980 | 31700 | 0.0585 | |
|
| 0.5999 | 31800 | 0.0978 | |
|
| 0.6018 | 31900 | 0.0657 | |
|
| 0.6037 | 32000 | 0.0438 | |
|
| 0.6056 | 32100 | 0.0429 | |
|
| 0.6075 | 32200 | 0.0629 | |
|
| 0.6094 | 32300 | 0.0591 | |
|
| 0.6113 | 32400 | 0.0543 | |
|
| 0.6131 | 32500 | 0.0502 | |
|
| 0.6150 | 32600 | 0.0733 | |
|
| 0.6169 | 32700 | 0.0426 | |
|
| 0.6188 | 32800 | 0.0626 | |
|
| 0.6207 | 32900 | 0.0406 | |
|
| 0.6226 | 33000 | 0.0524 | |
|
| 0.6245 | 33100 | 0.0619 | |
|
| 0.6263 | 33200 | 0.0633 | |
|
| 0.6282 | 33300 | 0.0582 | |
|
| 0.6301 | 33400 | 0.0852 | |
|
| 0.6320 | 33500 | 0.0482 | |
|
| 0.6339 | 33600 | 0.0509 | |
|
| 0.6358 | 33700 | 0.0626 | |
|
| 0.6377 | 33800 | 0.0609 | |
|
| 0.6396 | 33900 | 0.0508 | |
|
| 0.6414 | 34000 | 0.0486 | |
|
| 0.6433 | 34100 | 0.0508 | |
|
| 0.6452 | 34200 | 0.0581 | |
|
| 0.6471 | 34300 | 0.0409 | |
|
| 0.6490 | 34400 | 0.0703 | |
|
| 0.6509 | 34500 | 0.0606 | |
|
| 0.6528 | 34600 | 0.0517 | |
|
| 0.6546 | 34700 | 0.0493 | |
|
| 0.6565 | 34800 | 0.0271 | |
|
| 0.6584 | 34900 | 0.0337 | |
|
| 0.6603 | 35000 | 0.0369 | |
|
| 0.6622 | 35100 | 0.0474 | |
|
| 0.6641 | 35200 | 0.0562 | |
|
| 0.6660 | 35300 | 0.0663 | |
|
| 0.6678 | 35400 | 0.0419 | |
|
| 0.6697 | 35500 | 0.0766 | |
|
| 0.6716 | 35600 | 0.0439 | |
|
| 0.6735 | 35700 | 0.0538 | |
|
| 0.6754 | 35800 | 0.0512 | |
|
| 0.6773 | 35900 | 0.0388 | |
|
| 0.6792 | 36000 | 0.0528 | |
|
| 0.6811 | 36100 | 0.0489 | |
|
| 0.6829 | 36200 | 0.0454 | |
|
| 0.6848 | 36300 | 0.0449 | |
|
| 0.6867 | 36400 | 0.055 | |
|
| 0.6886 | 36500 | 0.0344 | |
|
| 0.6905 | 36600 | 0.0485 | |
|
| 0.6924 | 36700 | 0.0496 | |
|
| 0.6943 | 36800 | 0.0705 | |
|
| 0.6961 | 36900 | 0.0617 | |
|
| 0.6980 | 37000 | 0.054 | |
|
| 0.6999 | 37100 | 0.0613 | |
|
| 0.7018 | 37200 | 0.0549 | |
|
| 0.7037 | 37300 | 0.0378 | |
|
| 0.7056 | 37400 | 0.0508 | |
|
| 0.7075 | 37500 | 0.0613 | |
|
| 0.7094 | 37600 | 0.0602 | |
|
| 0.7112 | 37700 | 0.0592 | |
|
| 0.7131 | 37800 | 0.0441 | |
|
| 0.7150 | 37900 | 0.0445 | |
|
| 0.7169 | 38000 | 0.0464 | |
|
| 0.7188 | 38100 | 0.0537 | |
|
| 0.7207 | 38200 | 0.0521 | |
|
| 0.7226 | 38300 | 0.0447 | |
|
| 0.7244 | 38400 | 0.044 | |
|
| 0.7263 | 38500 | 0.0506 | |
|
| 0.7282 | 38600 | 0.043 | |
|
| 0.7301 | 38700 | 0.0441 | |
|
| 0.7320 | 38800 | 0.0444 | |
|
| 0.7339 | 38900 | 0.0416 | |
|
| 0.7358 | 39000 | 0.0556 | |
|
| 0.7377 | 39100 | 0.0829 | |
|
| 0.7395 | 39200 | 0.043 | |
|
| 0.7414 | 39300 | 0.0366 | |
|
| 0.7433 | 39400 | 0.0457 | |
|
| 0.7452 | 39500 | 0.0622 | |
|
| 0.7471 | 39600 | 0.0353 | |
|
| 0.7490 | 39700 | 0.0597 | |
|
| 0.7509 | 39800 | 0.0468 | |
|
| 0.7527 | 39900 | 0.0418 | |
|
| 0.7546 | 40000 | 0.0606 | |
|
| 0.7565 | 40100 | 0.0613 | |
|
| 0.7584 | 40200 | 0.0654 | |
|
| 0.7603 | 40300 | 0.046 | |
|
| 0.7622 | 40400 | 0.034 | |
|
| 0.7641 | 40500 | 0.0378 | |
|
| 0.7660 | 40600 | 0.0461 | |
|
| 0.7678 | 40700 | 0.0404 | |
|
| 0.7697 | 40800 | 0.0583 | |
|
| 0.7716 | 40900 | 0.0636 | |
|
| 0.7735 | 41000 | 0.0537 | |
|
| 0.7754 | 41100 | 0.0336 | |
|
| 0.7773 | 41200 | 0.0315 | |
|
| 0.7792 | 41300 | 0.0536 | |
|
| 0.7810 | 41400 | 0.0532 | |
|
| 0.7829 | 41500 | 0.0553 | |
|
| 0.7848 | 41600 | 0.0458 | |
|
| 0.7867 | 41700 | 0.0372 | |
|
| 0.7886 | 41800 | 0.0346 | |
|
| 0.7905 | 41900 | 0.0419 | |
|
| 0.7924 | 42000 | 0.0461 | |
|
| 0.7942 | 42100 | 0.0517 | |
|
| 0.7961 | 42200 | 0.0574 | |
|
| 0.7980 | 42300 | 0.0411 | |
|
| 0.7999 | 42400 | 0.0389 | |
|
| 0.8018 | 42500 | 0.0578 | |
|
| 0.8037 | 42600 | 0.0637 | |
|
| 0.8056 | 42700 | 0.0434 | |
|
| 0.8075 | 42800 | 0.0776 | |
|
| 0.8093 | 42900 | 0.0644 | |
|
| 0.8112 | 43000 | 0.0537 | |
|
| 0.8131 | 43100 | 0.0519 | |
|
| 0.8150 | 43200 | 0.0241 | |
|
| 0.8169 | 43300 | 0.0295 | |
|
| 0.8188 | 43400 | 0.0618 | |
|
| 0.8207 | 43500 | 0.0275 | |
|
| 0.8225 | 43600 | 0.0605 | |
|
| 0.8244 | 43700 | 0.0414 | |
|
| 0.8263 | 43800 | 0.0446 | |
|
| 0.8282 | 43900 | 0.0449 | |
|
| 0.8301 | 44000 | 0.0558 | |
|
| 0.8320 | 44100 | 0.0336 | |
|
| 0.8339 | 44200 | 0.0555 | |
|
| 0.8358 | 44300 | 0.0399 | |
|
| 0.8376 | 44400 | 0.0319 | |
|
| 0.8395 | 44500 | 0.0331 | |
|
| 0.8414 | 44600 | 0.0415 | |
|
| 0.8433 | 44700 | 0.0424 | |
|
| 0.8452 | 44800 | 0.0287 | |
|
| 0.8471 | 44900 | 0.044 | |
|
| 0.8490 | 45000 | 0.0375 | |
|
| 0.8508 | 45100 | 0.032 | |
|
| 0.8527 | 45200 | 0.0406 | |
|
| 0.8546 | 45300 | 0.0429 | |
|
| 0.8565 | 45400 | 0.0727 | |
|
| 0.8584 | 45500 | 0.05 | |
|
| 0.8603 | 45600 | 0.0436 | |
|
| 0.8622 | 45700 | 0.0401 | |
|
| 0.8641 | 45800 | 0.0312 | |
|
| 0.8659 | 45900 | 0.036 | |
|
| 0.8678 | 46000 | 0.0558 | |
|
| 0.8697 | 46100 | 0.0436 | |
|
| 0.8716 | 46200 | 0.0517 | |
|
| 0.8735 | 46300 | 0.0361 | |
|
| 0.8754 | 46400 | 0.038 | |
|
| 0.8773 | 46500 | 0.0418 | |
|
| 0.8791 | 46600 | 0.0407 | |
|
| 0.8810 | 46700 | 0.0336 | |
|
| 0.8829 | 46800 | 0.0559 | |
|
| 0.8848 | 46900 | 0.0488 | |
|
| 0.8867 | 47000 | 0.0463 | |
|
| 0.8886 | 47100 | 0.0504 | |
|
| 0.8905 | 47200 | 0.0414 | |
|
| 0.8924 | 47300 | 0.0428 | |
|
| 0.8942 | 47400 | 0.0389 | |
|
| 0.8961 | 47500 | 0.0422 | |
|
| 0.8980 | 47600 | 0.0533 | |
|
| 0.8999 | 47700 | 0.0386 | |
|
| 0.9018 | 47800 | 0.0672 | |
|
| 0.9037 | 47900 | 0.0505 | |
|
| 0.9056 | 48000 | 0.0632 | |
|
| 0.9074 | 48100 | 0.0263 | |
|
| 0.9093 | 48200 | 0.0448 | |
|
| 0.9112 | 48300 | 0.0413 | |
|
| 0.9131 | 48400 | 0.0532 | |
|
| 0.9150 | 48500 | 0.0503 | |
|
| 0.9169 | 48600 | 0.0472 | |
|
| 0.9188 | 48700 | 0.0255 | |
|
| 0.9207 | 48800 | 0.035 | |
|
| 0.9225 | 48900 | 0.0353 | |
|
| 0.9244 | 49000 | 0.0407 | |
|
| 0.9263 | 49100 | 0.0154 | |
|
| 0.9282 | 49200 | 0.0535 | |
|
| 0.9301 | 49300 | 0.0435 | |
|
| 0.9320 | 49400 | 0.0461 | |
|
| 0.9339 | 49500 | 0.0288 | |
|
| 0.9357 | 49600 | 0.0366 | |
|
| 0.9376 | 49700 | 0.0411 | |
|
| 0.9395 | 49800 | 0.0605 | |
|
| 0.9414 | 49900 | 0.0551 | |
|
| 0.9433 | 50000 | 0.0297 | |
|
| 0.9452 | 50100 | 0.0388 | |
|
| 0.9471 | 50200 | 0.0402 | |
|
| 0.9489 | 50300 | 0.0321 | |
|
| 0.9508 | 50400 | 0.0538 | |
|
| 0.9527 | 50500 | 0.036 | |
|
| 0.9546 | 50600 | 0.0318 | |
|
| 0.9565 | 50700 | 0.0398 | |
|
| 0.9584 | 50800 | 0.0405 | |
|
| 0.9603 | 50900 | 0.0408 | |
|
| 0.9622 | 51000 | 0.0485 | |
|
| 0.9640 | 51100 | 0.047 | |
|
| 0.9659 | 51200 | 0.0452 | |
|
| 0.9678 | 51300 | 0.0469 | |
|
| 0.9697 | 51400 | 0.0473 | |
|
| 0.9716 | 51500 | 0.039 | |
|
| 0.9735 | 51600 | 0.0579 | |
|
| 0.9754 | 51700 | 0.0332 | |
|
| 0.9772 | 51800 | 0.0322 | |
|
| 0.9791 | 51900 | 0.0324 | |
|
| 0.9810 | 52000 | 0.035 | |
|
| 0.9829 | 52100 | 0.0517 | |
|
| 0.9848 | 52200 | 0.0275 | |
|
| 0.9867 | 52300 | 0.0466 | |
|
| 0.9886 | 52400 | 0.0452 | |
|
| 0.9905 | 52500 | 0.0446 | |
|
| 0.9923 | 52600 | 0.0357 | |
|
| 0.9942 | 52700 | 0.0368 | |
|
| 0.9961 | 52800 | 0.0365 | |
|
| 0.9980 | 52900 | 0.0303 | |
|
| 0.9999 | 53000 | 0.0288 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.12 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.51.1 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.5.2 |
|
- Datasets: 3.5.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |