File size: 38,540 Bytes
feae91a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:583058
- loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: 'Pre-Emphasis (PE)
A pre-emphasis filter is applied to the framed offset-free input signal:
)1
('
sentences:
- 'Windowing (W)
A Hamming window of length N is applied to the output of the pre-emphasis block:
(
)
N
n
n
s
N
n
n
s
pe
w
≤
≤
×
−
−
×
−
='
- 'Group or broadcast call, called mobile stations (GSM only)
Within each set of voice group call or voice broadcast call attributes stored
in the GCR as defined in 3GPP TS 43.068
and 3GPP TS 43.069, respectively, a priority level is included if eMLPP is applied.
The priority level will be provided
by the GCR to the MSC together with the call attributes.
The priority level shall be indicated together with the related notification messages
and treated in the mobile station as
defined in 3GPP TS 43.0'
- 'Description of the access technology indicator mechanism
This clause describes the mechanisms that can be employed to indicate access technology
specific dependencies in a
multi-access technology environment.
There are cases where toolkit applications need to know which access technology
the terminal is currently in so that it
can issue access technology dependent commands as well as determine that the response
to a particular command is
technology dependent. Setting up the event, ACCESS TECHNOL'
- source_sentence: 'Distribution of DL delay between NG-RAN and UE
a) This measurement provides the distribution of DL packet delay between NG-RAN
and UE, which is the delay
incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and
the delay over Uu
interface. This measurement is split into subcounters per 5QI and subcounters
per S-NSSAI.
b) DER (n=1).
ETSI
ETSI TS 128 552 V16.18.0 (2024-08)'
sentences:
- 'Distribution of UL delay between NG-RAN and UE
a) This measurement provides the distribution of UL packet delay between NG-RAN
and UE, which is the delay
incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and
the delay over Uu
interface. This measurement is split into subcounters per 5QI and subcounters
per S-NSSAI.
b) DER (n=1).
c) The measurement is obtained by the following method:
The gNB performs the GTP PDU packet delay measurement for QoS monitoring per the
GTP '
- 'Subscriber data
Subscription to MExE services shall be logically separate to subscription of network
services. A subscriber may have a
MExE subscription to multiple MExE service providers. It may also be possible
for the subscriber to interrogate such
subscription registration (with a suitable means of authorisation), depending
on PLMN support.'
- 'MSC for LMU Control
When a control message has to be routed to an LMU from an SMLC, the SMLC addresses
the serving MSC for the
LMU using an E.164 address.
ETSI
ETSI TS 129 002 V10.6.0 (2012-04)'
- source_sentence: 'Enter SMS Block Mode Protocol +CESP
Table 3.2.4-1: +CESP Action Command Syntax
Command
Possible response(s)
+CESP
+CESP=?
Description
Execution command sets the TA in SMS block protocol mode. The TA shall return
OK (or 0) to confirm acceptance of
the command prior to entering the block mode (see clause 2.1.1). The final result
code OK (or 0) shall be returned when
the block mode is exited.
NOTE:
Commands following +CESP in the AT command line must not be processed by the TA.
Implementation
Ma'
sentences:
- 'SGSN
To support NBIFOM, the SGSN needs to be capable to:
ETSI
ETSI TS 123 161 V14.0.0 (2017-05)'
- 'Message Service Failure Result Code +CMS ERROR
Final result code +CMS ERROR: <err> indicates an error related to mobile equipment
or network. The operation is
similar to ERROR final result code. None of the following commands in the same
command line is executed. Neither
ERROR nor OK final result code shall be returned. ERROR is returned normally when
error is related to syntax or invalid
parameters.
Defined Values
<err> values used by common messaging commands:'
- 'C
C
-
-
P
Service Priority Level'
- source_sentence: 'Definition
Cell synchronization accuracy is defined as the maximum deviation in frame start
times between any pair of cells on the
same frequency that have overlapping coverage areas.'
sentences:
- 'Minimum requirements
The cell synchronization accuracy shall be better than or equal to 3μs.'
- "Subsequent Inter-MSC Handover to third MSC\nWhen a Mobile Station is being handed\
\ over to a third MSC, the procedure (described in GSM 03.09)\ndoes require one\
\ specific interworking case in MSC-A (figure 20) between E-Interface from MSC-B\
\ and E-\nInterface from MSC-B' other than the combination of the ones described\
\ in the chapter 4.5.1 and 4.5.2.\n%66\x10$\x03\x03\x03\x03\x03\x0306&\x10%\x03\
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10$\x03\
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10%\n_\x03\x03\x03\x03\x03\x03\
\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\
\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\
\x03\x03\x03\x03_\n_+$1'29(5\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03"
- 'DL Total PRB Usage
a) This measurement provides the total usage (in percentage) of physical resource
blocks (PRBs) on the downlink
for any purpose.
b) SI
c) This measurement is obtained as:
∗
='
- source_sentence: Carrier aggregation measurement accuracy
sentences:
- 'PUCCH / PUSCH / SRS time mask
The PUCCH/PUSCH/SRS time mask defines the observation period between sounding
reference symbol (SRS) and an
adjacent PUSCH/PUCCH symbol and subsequent sub-frame.
There are no additional requirements on UE transmit power beyond that which is
required in subclause 6.2.2 and
subclause 6.6.2.3
ETSI
ETSI TS 136 101 V9.16.0 (2013-07)'
- 'Reference Signal Time Difference (RSTD) Measurement Accuracy
Requirements for Carrier Aggregation
A.8
UE Measurements Procedures
A.9
Measurement Performance Requirements
NOTE:
Only requirements and test cases in this table defined for inter-band carrier
aggregation shall apply.
ETSI
ETSI TS 136 307 V10.17.0 (2016-01)'
- 'Operator control
Three general architectures are candidates to offer energy savings functionalities:
Distributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].
Energy savings in cells can be initiated in several different ways. Some of the
mechanisms are:
For NM-centralized architecture
-
IRPManager instructs the cells to move to energySaving state (e.g. according to
a schedule determined by
network statistics) , configures trigger points (e.g. load threshold crossing)
when it want'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lucian-li/my_new_model")
# Run inference
sentences = [
'Carrier aggregation measurement accuracy',
'Reference Signal Time Difference (RSTD) Measurement Accuracy\nRequirements for Carrier Aggregation\nA.8\nUE Measurements Procedures\nA.9\nMeasurement Performance Requirements\nNOTE:\nOnly requirements and test cases in this table defined for inter-band carrier aggregation shall apply.\n\n\nETSI\nETSI TS 136 307 V10.17.0 (2016-01)',
'Operator control\nThree general architectures are candidates to offer energy savings functionalities:\nDistributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].\nEnergy savings in cells can be initiated in several different ways. Some of the mechanisms are:\nFor NM-centralized architecture\n-\nIRPManager instructs the cells to move to energySaving state (e.g. according to a schedule determined by\nnetwork statistics) , configures trigger points (e.g. load threshold crossing) when it want',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 583,058 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 85.73 tokens</li><li>max: 229 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 85.86 tokens</li><li>max: 229 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Triggering Optimization Function (TG_F)<br>This functional bloc supports the following functions: [SO2], [SO3].</code> | <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code> |
| <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code> | <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> |
| <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> | <code>NRM IRP Update Function (NRM_UF)<br>This function updates the E-UTRAN and EPC NRM IRP with the optimization modification if needed.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 11
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 11
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0019 | 100 | 0.8198 |
| 0.0038 | 200 | 0.7651 |
| 0.0057 | 300 | 0.6659 |
| 0.0075 | 400 | 0.6404 |
| 0.0094 | 500 | 0.5638 |
| 0.0113 | 600 | 0.5184 |
| 0.0132 | 700 | 0.448 |
| 0.0151 | 800 | 0.4464 |
| 0.0170 | 900 | 0.3461 |
| 0.0189 | 1000 | 0.3731 |
| 0.0208 | 1100 | 0.343 |
| 0.0226 | 1200 | 0.3557 |
| 0.0245 | 1300 | 0.3623 |
| 0.0264 | 1400 | 0.2941 |
| 0.0283 | 1500 | 0.3153 |
| 0.0302 | 1600 | 0.2724 |
| 0.0321 | 1700 | 0.2702 |
| 0.0340 | 1800 | 0.2934 |
| 0.0358 | 1900 | 0.2255 |
| 0.0377 | 2000 | 0.2519 |
| 0.0396 | 2100 | 0.2424 |
| 0.0415 | 2200 | 0.1883 |
| 0.0434 | 2300 | 0.2428 |
| 0.0453 | 2400 | 0.2212 |
| 0.0472 | 2500 | 0.1862 |
| 0.0491 | 2600 | 0.2451 |
| 0.0509 | 2700 | 0.2336 |
| 0.0528 | 2800 | 0.225 |
| 0.0547 | 2900 | 0.2154 |
| 0.0566 | 3000 | 0.1907 |
| 0.0585 | 3100 | 0.2514 |
| 0.0604 | 3200 | 0.2082 |
| 0.0623 | 3300 | 0.2076 |
| 0.0641 | 3400 | 0.1818 |
| 0.0660 | 3500 | 0.1688 |
| 0.0679 | 3600 | 0.2261 |
| 0.0698 | 3700 | 0.2108 |
| 0.0717 | 3800 | 0.1732 |
| 0.0736 | 3900 | 0.1764 |
| 0.0755 | 4000 | 0.1481 |
| 0.0773 | 4100 | 0.1687 |
| 0.0792 | 4200 | 0.1897 |
| 0.0811 | 4300 | 0.1685 |
| 0.0830 | 4400 | 0.1915 |
| 0.0849 | 4500 | 0.2013 |
| 0.0868 | 4600 | 0.1701 |
| 0.0887 | 4700 | 0.2006 |
| 0.0906 | 4800 | 0.2006 |
| 0.0924 | 4900 | 0.1617 |
| 0.0943 | 5000 | 0.1406 |
| 0.0962 | 5100 | 0.1456 |
| 0.0981 | 5200 | 0.1703 |
| 0.1000 | 5300 | 0.1464 |
| 0.1019 | 5400 | 0.1803 |
| 0.1038 | 5500 | 0.1346 |
| 0.1056 | 5600 | 0.134 |
| 0.1075 | 5700 | 0.1567 |
| 0.1094 | 5800 | 0.163 |
| 0.1113 | 5900 | 0.1544 |
| 0.1132 | 6000 | 0.1648 |
| 0.1151 | 6100 | 0.1505 |
| 0.1170 | 6200 | 0.1231 |
| 0.1189 | 6300 | 0.1591 |
| 0.1207 | 6400 | 0.1533 |
| 0.1226 | 6500 | 0.1376 |
| 0.1245 | 6600 | 0.1473 |
| 0.1264 | 6700 | 0.1405 |
| 0.1283 | 6800 | 0.141 |
| 0.1302 | 6900 | 0.1105 |
| 0.1321 | 7000 | 0.1712 |
| 0.1339 | 7100 | 0.1534 |
| 0.1358 | 7200 | 0.1578 |
| 0.1377 | 7300 | 0.1101 |
| 0.1396 | 7400 | 0.128 |
| 0.1415 | 7500 | 0.1679 |
| 0.1434 | 7600 | 0.1592 |
| 0.1453 | 7700 | 0.1383 |
| 0.1472 | 7800 | 0.1274 |
| 0.1490 | 7900 | 0.1616 |
| 0.1509 | 8000 | 0.1617 |
| 0.1528 | 8100 | 0.1361 |
| 0.1547 | 8200 | 0.1268 |
| 0.1566 | 8300 | 0.1286 |
| 0.1585 | 8400 | 0.1253 |
| 0.1604 | 8500 | 0.1157 |
| 0.1622 | 8600 | 0.1499 |
| 0.1641 | 8700 | 0.1398 |
| 0.1660 | 8800 | 0.1188 |
| 0.1679 | 8900 | 0.1103 |
| 0.1698 | 9000 | 0.1217 |
| 0.1717 | 9100 | 0.1144 |
| 0.1736 | 9200 | 0.1203 |
| 0.1755 | 9300 | 0.1074 |
| 0.1773 | 9400 | 0.1145 |
| 0.1792 | 9500 | 0.1035 |
| 0.1811 | 9600 | 0.1406 |
| 0.1830 | 9700 | 0.1465 |
| 0.1849 | 9800 | 0.1169 |
| 0.1868 | 9900 | 0.1115 |
| 0.1887 | 10000 | 0.1207 |
| 0.1905 | 10100 | 0.1191 |
| 0.1924 | 10200 | 0.1099 |
| 0.1943 | 10300 | 0.1309 |
| 0.1962 | 10400 | 0.1092 |
| 0.1981 | 10500 | 0.1075 |
| 0.2000 | 10600 | 0.1174 |
| 0.2019 | 10700 | 0.1103 |
| 0.2038 | 10800 | 0.1077 |
| 0.2056 | 10900 | 0.0844 |
| 0.2075 | 11000 | 0.1093 |
| 0.2094 | 11100 | 0.1428 |
| 0.2113 | 11200 | 0.0928 |
| 0.2132 | 11300 | 0.1039 |
| 0.2151 | 11400 | 0.1436 |
| 0.2170 | 11500 | 0.1197 |
| 0.2188 | 11600 | 0.1249 |
| 0.2207 | 11700 | 0.0856 |
| 0.2226 | 11800 | 0.1126 |
| 0.2245 | 11900 | 0.1028 |
| 0.2264 | 12000 | 0.0988 |
| 0.2283 | 12100 | 0.1031 |
| 0.2302 | 12200 | 0.101 |
| 0.2320 | 12300 | 0.1188 |
| 0.2339 | 12400 | 0.0908 |
| 0.2358 | 12500 | 0.069 |
| 0.2377 | 12600 | 0.1099 |
| 0.2396 | 12700 | 0.1227 |
| 0.2415 | 12800 | 0.0794 |
| 0.2434 | 12900 | 0.0969 |
| 0.2453 | 13000 | 0.0864 |
| 0.2471 | 13100 | 0.1193 |
| 0.2490 | 13200 | 0.0824 |
| 0.2509 | 13300 | 0.12 |
| 0.2528 | 13400 | 0.0928 |
| 0.2547 | 13500 | 0.1126 |
| 0.2566 | 13600 | 0.0912 |
| 0.2585 | 13700 | 0.1126 |
| 0.2603 | 13800 | 0.078 |
| 0.2622 | 13900 | 0.0715 |
| 0.2641 | 14000 | 0.1095 |
| 0.2660 | 14100 | 0.089 |
| 0.2679 | 14200 | 0.0926 |
| 0.2698 | 14300 | 0.086 |
| 0.2717 | 14400 | 0.1115 |
| 0.2736 | 14500 | 0.0996 |
| 0.2754 | 14600 | 0.1014 |
| 0.2773 | 14700 | 0.1033 |
| 0.2792 | 14800 | 0.0732 |
| 0.2811 | 14900 | 0.0994 |
| 0.2830 | 15000 | 0.0872 |
| 0.2849 | 15100 | 0.0923 |
| 0.2868 | 15200 | 0.111 |
| 0.2886 | 15300 | 0.0891 |
| 0.2905 | 15400 | 0.0868 |
| 0.2924 | 15500 | 0.0773 |
| 0.2943 | 15600 | 0.0918 |
| 0.2962 | 15700 | 0.0726 |
| 0.2981 | 15800 | 0.0951 |
| 0.3000 | 15900 | 0.0835 |
| 0.3019 | 16000 | 0.083 |
| 0.3037 | 16100 | 0.095 |
| 0.3056 | 16200 | 0.0722 |
| 0.3075 | 16300 | 0.1061 |
| 0.3094 | 16400 | 0.0902 |
| 0.3113 | 16500 | 0.0978 |
| 0.3132 | 16600 | 0.0983 |
| 0.3151 | 16700 | 0.0808 |
| 0.3169 | 16800 | 0.0758 |
| 0.3188 | 16900 | 0.071 |
| 0.3207 | 17000 | 0.0918 |
| 0.3226 | 17100 | 0.1011 |
| 0.3245 | 17200 | 0.079 |
| 0.3264 | 17300 | 0.0992 |
| 0.3283 | 17400 | 0.1089 |
| 0.3302 | 17500 | 0.0904 |
| 0.3320 | 17600 | 0.0956 |
| 0.3339 | 17700 | 0.0747 |
| 0.3358 | 17800 | 0.0961 |
| 0.3377 | 17900 | 0.0923 |
| 0.3396 | 18000 | 0.1114 |
| 0.3415 | 18100 | 0.0689 |
| 0.3434 | 18200 | 0.1308 |
| 0.3452 | 18300 | 0.0923 |
| 0.3471 | 18400 | 0.0756 |
| 0.3490 | 18500 | 0.0842 |
| 0.3509 | 18600 | 0.0859 |
| 0.3528 | 18700 | 0.0903 |
| 0.3547 | 18800 | 0.084 |
| 0.3566 | 18900 | 0.0923 |
| 0.3584 | 19000 | 0.0848 |
| 0.3603 | 19100 | 0.0812 |
| 0.3622 | 19200 | 0.0872 |
| 0.3641 | 19300 | 0.083 |
| 0.3660 | 19400 | 0.0826 |
| 0.3679 | 19500 | 0.101 |
| 0.3698 | 19600 | 0.0804 |
| 0.3717 | 19700 | 0.0676 |
| 0.3735 | 19800 | 0.0836 |
| 0.3754 | 19900 | 0.0711 |
| 0.3773 | 20000 | 0.0825 |
| 0.3792 | 20100 | 0.0835 |
| 0.3811 | 20200 | 0.0816 |
| 0.3830 | 20300 | 0.0812 |
| 0.3849 | 20400 | 0.0689 |
| 0.3867 | 20500 | 0.0627 |
| 0.3886 | 20600 | 0.0965 |
| 0.3905 | 20700 | 0.0632 |
| 0.3924 | 20800 | 0.0945 |
| 0.3943 | 20900 | 0.0923 |
| 0.3962 | 21000 | 0.0833 |
| 0.3981 | 21100 | 0.0537 |
| 0.4000 | 21200 | 0.0822 |
| 0.4018 | 21300 | 0.0684 |
| 0.4037 | 21400 | 0.0807 |
| 0.4056 | 21500 | 0.0945 |
| 0.4075 | 21600 | 0.0981 |
| 0.4094 | 21700 | 0.0748 |
| 0.4113 | 21800 | 0.0943 |
| 0.4132 | 21900 | 0.0709 |
| 0.4150 | 22000 | 0.0551 |
| 0.4169 | 22100 | 0.0679 |
| 0.4188 | 22200 | 0.0666 |
| 0.4207 | 22300 | 0.0976 |
| 0.4226 | 22400 | 0.0666 |
| 0.4245 | 22500 | 0.0651 |
| 0.4264 | 22600 | 0.0803 |
| 0.4283 | 22700 | 0.068 |
| 0.4301 | 22800 | 0.0541 |
| 0.4320 | 22900 | 0.0487 |
| 0.4339 | 23000 | 0.091 |
| 0.4358 | 23100 | 0.074 |
| 0.4377 | 23200 | 0.0733 |
| 0.4396 | 23300 | 0.0845 |
| 0.4415 | 23400 | 0.0823 |
| 0.4433 | 23500 | 0.0561 |
| 0.4452 | 23600 | 0.0508 |
| 0.4471 | 23700 | 0.074 |
| 0.4490 | 23800 | 0.0683 |
| 0.4509 | 23900 | 0.0797 |
| 0.4528 | 24000 | 0.0561 |
| 0.4547 | 24100 | 0.0744 |
| 0.4566 | 24200 | 0.0638 |
| 0.4584 | 24300 | 0.0633 |
| 0.4603 | 24400 | 0.062 |
| 0.4622 | 24500 | 0.0887 |
| 0.4641 | 24600 | 0.0908 |
| 0.4660 | 24700 | 0.0654 |
| 0.4679 | 24800 | 0.0522 |
| 0.4698 | 24900 | 0.0851 |
| 0.4716 | 25000 | 0.0763 |
| 0.4735 | 25100 | 0.0623 |
| 0.4754 | 25200 | 0.0712 |
| 0.4773 | 25300 | 0.0866 |
| 0.4792 | 25400 | 0.0812 |
| 0.4811 | 25500 | 0.0706 |
| 0.4830 | 25600 | 0.0734 |
| 0.4849 | 25700 | 0.068 |
| 0.4867 | 25800 | 0.111 |
| 0.4886 | 25900 | 0.0627 |
| 0.4905 | 26000 | 0.0459 |
| 0.4924 | 26100 | 0.0794 |
| 0.4943 | 26200 | 0.0547 |
| 0.4962 | 26300 | 0.0779 |
| 0.4981 | 26400 | 0.0609 |
| 0.4999 | 26500 | 0.0785 |
| 0.5018 | 26600 | 0.0722 |
| 0.5037 | 26700 | 0.0585 |
| 0.5056 | 26800 | 0.0572 |
| 0.5075 | 26900 | 0.0636 |
| 0.5094 | 27000 | 0.0642 |
| 0.5113 | 27100 | 0.0606 |
| 0.5131 | 27200 | 0.0725 |
| 0.5150 | 27300 | 0.0664 |
| 0.5169 | 27400 | 0.0933 |
| 0.5188 | 27500 | 0.0486 |
| 0.5207 | 27600 | 0.0514 |
| 0.5226 | 27700 | 0.0779 |
| 0.5245 | 27800 | 0.0614 |
| 0.5264 | 27900 | 0.0646 |
| 0.5282 | 28000 | 0.0606 |
| 0.5301 | 28100 | 0.0453 |
| 0.5320 | 28200 | 0.0749 |
| 0.5339 | 28300 | 0.0695 |
| 0.5358 | 28400 | 0.0897 |
| 0.5377 | 28500 | 0.0612 |
| 0.5396 | 28600 | 0.0542 |
| 0.5414 | 28700 | 0.0504 |
| 0.5433 | 28800 | 0.0539 |
| 0.5452 | 28900 | 0.0584 |
| 0.5471 | 29000 | 0.0552 |
| 0.5490 | 29100 | 0.076 |
| 0.5509 | 29200 | 0.0861 |
| 0.5528 | 29300 | 0.067 |
| 0.5547 | 29400 | 0.0887 |
| 0.5565 | 29500 | 0.059 |
| 0.5584 | 29600 | 0.0484 |
| 0.5603 | 29700 | 0.0703 |
| 0.5622 | 29800 | 0.0802 |
| 0.5641 | 29900 | 0.0805 |
| 0.5660 | 30000 | 0.0737 |
| 0.5679 | 30100 | 0.0518 |
| 0.5697 | 30200 | 0.0517 |
| 0.5716 | 30300 | 0.0806 |
| 0.5735 | 30400 | 0.0586 |
| 0.5754 | 30500 | 0.0491 |
| 0.5773 | 30600 | 0.0591 |
| 0.5792 | 30700 | 0.066 |
| 0.5811 | 30800 | 0.0419 |
| 0.5830 | 30900 | 0.0517 |
| 0.5848 | 31000 | 0.0539 |
| 0.5867 | 31100 | 0.0845 |
| 0.5886 | 31200 | 0.044 |
| 0.5905 | 31300 | 0.0597 |
| 0.5924 | 31400 | 0.0556 |
| 0.5943 | 31500 | 0.0724 |
| 0.5962 | 31600 | 0.0465 |
| 0.5980 | 31700 | 0.0585 |
| 0.5999 | 31800 | 0.0978 |
| 0.6018 | 31900 | 0.0657 |
| 0.6037 | 32000 | 0.0438 |
| 0.6056 | 32100 | 0.0429 |
| 0.6075 | 32200 | 0.0629 |
| 0.6094 | 32300 | 0.0591 |
| 0.6113 | 32400 | 0.0543 |
| 0.6131 | 32500 | 0.0502 |
| 0.6150 | 32600 | 0.0733 |
| 0.6169 | 32700 | 0.0426 |
| 0.6188 | 32800 | 0.0626 |
| 0.6207 | 32900 | 0.0406 |
| 0.6226 | 33000 | 0.0524 |
| 0.6245 | 33100 | 0.0619 |
| 0.6263 | 33200 | 0.0633 |
| 0.6282 | 33300 | 0.0582 |
| 0.6301 | 33400 | 0.0852 |
| 0.6320 | 33500 | 0.0482 |
| 0.6339 | 33600 | 0.0509 |
| 0.6358 | 33700 | 0.0626 |
| 0.6377 | 33800 | 0.0609 |
| 0.6396 | 33900 | 0.0508 |
| 0.6414 | 34000 | 0.0486 |
| 0.6433 | 34100 | 0.0508 |
| 0.6452 | 34200 | 0.0581 |
| 0.6471 | 34300 | 0.0409 |
| 0.6490 | 34400 | 0.0703 |
| 0.6509 | 34500 | 0.0606 |
| 0.6528 | 34600 | 0.0517 |
| 0.6546 | 34700 | 0.0493 |
| 0.6565 | 34800 | 0.0271 |
| 0.6584 | 34900 | 0.0337 |
| 0.6603 | 35000 | 0.0369 |
| 0.6622 | 35100 | 0.0474 |
| 0.6641 | 35200 | 0.0562 |
| 0.6660 | 35300 | 0.0663 |
| 0.6678 | 35400 | 0.0419 |
| 0.6697 | 35500 | 0.0766 |
| 0.6716 | 35600 | 0.0439 |
| 0.6735 | 35700 | 0.0538 |
| 0.6754 | 35800 | 0.0512 |
| 0.6773 | 35900 | 0.0388 |
| 0.6792 | 36000 | 0.0528 |
| 0.6811 | 36100 | 0.0489 |
| 0.6829 | 36200 | 0.0454 |
| 0.6848 | 36300 | 0.0449 |
| 0.6867 | 36400 | 0.055 |
| 0.6886 | 36500 | 0.0344 |
| 0.6905 | 36600 | 0.0485 |
| 0.6924 | 36700 | 0.0496 |
| 0.6943 | 36800 | 0.0705 |
| 0.6961 | 36900 | 0.0617 |
| 0.6980 | 37000 | 0.054 |
| 0.6999 | 37100 | 0.0613 |
| 0.7018 | 37200 | 0.0549 |
| 0.7037 | 37300 | 0.0378 |
| 0.7056 | 37400 | 0.0508 |
| 0.7075 | 37500 | 0.0613 |
| 0.7094 | 37600 | 0.0602 |
| 0.7112 | 37700 | 0.0592 |
| 0.7131 | 37800 | 0.0441 |
| 0.7150 | 37900 | 0.0445 |
| 0.7169 | 38000 | 0.0464 |
| 0.7188 | 38100 | 0.0537 |
| 0.7207 | 38200 | 0.0521 |
| 0.7226 | 38300 | 0.0447 |
| 0.7244 | 38400 | 0.044 |
| 0.7263 | 38500 | 0.0506 |
| 0.7282 | 38600 | 0.043 |
| 0.7301 | 38700 | 0.0441 |
| 0.7320 | 38800 | 0.0444 |
| 0.7339 | 38900 | 0.0416 |
| 0.7358 | 39000 | 0.0556 |
| 0.7377 | 39100 | 0.0829 |
| 0.7395 | 39200 | 0.043 |
| 0.7414 | 39300 | 0.0366 |
| 0.7433 | 39400 | 0.0457 |
| 0.7452 | 39500 | 0.0622 |
| 0.7471 | 39600 | 0.0353 |
| 0.7490 | 39700 | 0.0597 |
| 0.7509 | 39800 | 0.0468 |
| 0.7527 | 39900 | 0.0418 |
| 0.7546 | 40000 | 0.0606 |
| 0.7565 | 40100 | 0.0613 |
| 0.7584 | 40200 | 0.0654 |
| 0.7603 | 40300 | 0.046 |
| 0.7622 | 40400 | 0.034 |
| 0.7641 | 40500 | 0.0378 |
| 0.7660 | 40600 | 0.0461 |
| 0.7678 | 40700 | 0.0404 |
| 0.7697 | 40800 | 0.0583 |
| 0.7716 | 40900 | 0.0636 |
| 0.7735 | 41000 | 0.0537 |
| 0.7754 | 41100 | 0.0336 |
| 0.7773 | 41200 | 0.0315 |
| 0.7792 | 41300 | 0.0536 |
| 0.7810 | 41400 | 0.0532 |
| 0.7829 | 41500 | 0.0553 |
| 0.7848 | 41600 | 0.0458 |
| 0.7867 | 41700 | 0.0372 |
| 0.7886 | 41800 | 0.0346 |
| 0.7905 | 41900 | 0.0419 |
| 0.7924 | 42000 | 0.0461 |
| 0.7942 | 42100 | 0.0517 |
| 0.7961 | 42200 | 0.0574 |
| 0.7980 | 42300 | 0.0411 |
| 0.7999 | 42400 | 0.0389 |
| 0.8018 | 42500 | 0.0578 |
| 0.8037 | 42600 | 0.0637 |
| 0.8056 | 42700 | 0.0434 |
| 0.8075 | 42800 | 0.0776 |
| 0.8093 | 42900 | 0.0644 |
| 0.8112 | 43000 | 0.0537 |
| 0.8131 | 43100 | 0.0519 |
| 0.8150 | 43200 | 0.0241 |
| 0.8169 | 43300 | 0.0295 |
| 0.8188 | 43400 | 0.0618 |
| 0.8207 | 43500 | 0.0275 |
| 0.8225 | 43600 | 0.0605 |
| 0.8244 | 43700 | 0.0414 |
| 0.8263 | 43800 | 0.0446 |
| 0.8282 | 43900 | 0.0449 |
| 0.8301 | 44000 | 0.0558 |
| 0.8320 | 44100 | 0.0336 |
| 0.8339 | 44200 | 0.0555 |
| 0.8358 | 44300 | 0.0399 |
| 0.8376 | 44400 | 0.0319 |
| 0.8395 | 44500 | 0.0331 |
| 0.8414 | 44600 | 0.0415 |
| 0.8433 | 44700 | 0.0424 |
| 0.8452 | 44800 | 0.0287 |
| 0.8471 | 44900 | 0.044 |
| 0.8490 | 45000 | 0.0375 |
| 0.8508 | 45100 | 0.032 |
| 0.8527 | 45200 | 0.0406 |
| 0.8546 | 45300 | 0.0429 |
| 0.8565 | 45400 | 0.0727 |
| 0.8584 | 45500 | 0.05 |
| 0.8603 | 45600 | 0.0436 |
| 0.8622 | 45700 | 0.0401 |
| 0.8641 | 45800 | 0.0312 |
| 0.8659 | 45900 | 0.036 |
| 0.8678 | 46000 | 0.0558 |
| 0.8697 | 46100 | 0.0436 |
| 0.8716 | 46200 | 0.0517 |
| 0.8735 | 46300 | 0.0361 |
| 0.8754 | 46400 | 0.038 |
| 0.8773 | 46500 | 0.0418 |
| 0.8791 | 46600 | 0.0407 |
| 0.8810 | 46700 | 0.0336 |
| 0.8829 | 46800 | 0.0559 |
| 0.8848 | 46900 | 0.0488 |
| 0.8867 | 47000 | 0.0463 |
| 0.8886 | 47100 | 0.0504 |
| 0.8905 | 47200 | 0.0414 |
| 0.8924 | 47300 | 0.0428 |
| 0.8942 | 47400 | 0.0389 |
| 0.8961 | 47500 | 0.0422 |
| 0.8980 | 47600 | 0.0533 |
| 0.8999 | 47700 | 0.0386 |
| 0.9018 | 47800 | 0.0672 |
| 0.9037 | 47900 | 0.0505 |
| 0.9056 | 48000 | 0.0632 |
| 0.9074 | 48100 | 0.0263 |
| 0.9093 | 48200 | 0.0448 |
| 0.9112 | 48300 | 0.0413 |
| 0.9131 | 48400 | 0.0532 |
| 0.9150 | 48500 | 0.0503 |
| 0.9169 | 48600 | 0.0472 |
| 0.9188 | 48700 | 0.0255 |
| 0.9207 | 48800 | 0.035 |
| 0.9225 | 48900 | 0.0353 |
| 0.9244 | 49000 | 0.0407 |
| 0.9263 | 49100 | 0.0154 |
| 0.9282 | 49200 | 0.0535 |
| 0.9301 | 49300 | 0.0435 |
| 0.9320 | 49400 | 0.0461 |
| 0.9339 | 49500 | 0.0288 |
| 0.9357 | 49600 | 0.0366 |
| 0.9376 | 49700 | 0.0411 |
| 0.9395 | 49800 | 0.0605 |
| 0.9414 | 49900 | 0.0551 |
| 0.9433 | 50000 | 0.0297 |
| 0.9452 | 50100 | 0.0388 |
| 0.9471 | 50200 | 0.0402 |
| 0.9489 | 50300 | 0.0321 |
| 0.9508 | 50400 | 0.0538 |
| 0.9527 | 50500 | 0.036 |
| 0.9546 | 50600 | 0.0318 |
| 0.9565 | 50700 | 0.0398 |
| 0.9584 | 50800 | 0.0405 |
| 0.9603 | 50900 | 0.0408 |
| 0.9622 | 51000 | 0.0485 |
| 0.9640 | 51100 | 0.047 |
| 0.9659 | 51200 | 0.0452 |
| 0.9678 | 51300 | 0.0469 |
| 0.9697 | 51400 | 0.0473 |
| 0.9716 | 51500 | 0.039 |
| 0.9735 | 51600 | 0.0579 |
| 0.9754 | 51700 | 0.0332 |
| 0.9772 | 51800 | 0.0322 |
| 0.9791 | 51900 | 0.0324 |
| 0.9810 | 52000 | 0.035 |
| 0.9829 | 52100 | 0.0517 |
| 0.9848 | 52200 | 0.0275 |
| 0.9867 | 52300 | 0.0466 |
| 0.9886 | 52400 | 0.0452 |
| 0.9905 | 52500 | 0.0446 |
| 0.9923 | 52600 | 0.0357 |
| 0.9942 | 52700 | 0.0368 |
| 0.9961 | 52800 | 0.0365 |
| 0.9980 | 52900 | 0.0303 |
| 0.9999 | 53000 | 0.0288 |
</details>
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |