File size: 38,540 Bytes
feae91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:583058
- loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: 'Pre-Emphasis (PE)

    A pre-emphasis filter is applied to the framed offset-free input signal:


    )1

    ('
  sentences:
  - 'Windowing (W)

    A Hamming window of length N is applied to the output of the pre-emphasis block:


    (

    )

    N

    n

    n

    s

    N

    n

    n

    s

    pe

    w





    ×





























    ×



    ='
  - 'Group or broadcast call, called mobile stations (GSM only)

    Within each set of voice group call or voice broadcast call attributes stored
    in the GCR as defined in 3GPP TS 43.068

    and 3GPP TS 43.069, respectively, a priority level is included if eMLPP is applied.
    The priority level will be provided

    by the GCR to the MSC together with the call attributes.

    The priority level shall be indicated together with the related notification messages
    and treated in the mobile station as

    defined in 3GPP TS 43.0'
  - 'Description of the access technology indicator mechanism

    This clause describes the mechanisms that can be employed to indicate access technology
    specific dependencies in a

    multi-access technology environment.

    There are cases where toolkit applications need to know which access technology
    the terminal is currently in so that it

    can issue access technology dependent commands as well as determine that the response
    to a particular command is

    technology dependent. Setting up the event, ACCESS TECHNOL'
- source_sentence: 'Distribution of DL delay between NG-RAN and UE

    a) This measurement provides the distribution of DL packet delay between NG-RAN
    and UE, which is the delay

    incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and
    the delay over Uu

    interface. This measurement is split into subcounters per 5QI and subcounters
    per S-NSSAI.

    b) DER (n=1).


    ETSI

    ETSI TS 128 552 V16.18.0 (2024-08)'
  sentences:
  - 'Distribution of UL delay between NG-RAN and UE

    a) This measurement provides the distribution of UL packet delay between NG-RAN
    and UE, which is the delay

    incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and
    the delay over Uu

    interface. This measurement is split into subcounters per 5QI and subcounters
    per S-NSSAI.

    b) DER (n=1).

    c) The measurement is obtained by the following method:


    The gNB performs the GTP PDU packet delay measurement for QoS monitoring per the
    GTP '
  - 'Subscriber data

    Subscription to MExE services shall be logically separate to subscription of network
    services. A subscriber may have a

    MExE subscription to multiple MExE service providers. It may also be possible
    for the subscriber to interrogate such

    subscription registration (with a suitable means of authorisation), depending
    on PLMN support.'
  - 'MSC for LMU Control

    When a control message has to be routed to an LMU from an SMLC, the SMLC addresses
    the serving MSC for the

    LMU using an E.164 address.


    ETSI

    ETSI TS 129 002 V10.6.0 (2012-04)'
- source_sentence: 'Enter SMS Block Mode Protocol +CESP

    Table 3.2.4-1: +CESP Action Command Syntax

    Command

    Possible response(s)

    +CESP


    +CESP=?



    Description

    Execution command sets the TA in SMS block protocol mode. The TA shall return
    OK (or 0) to confirm acceptance of

    the command prior to entering the block mode (see clause 2.1.1). The final result
    code OK (or 0) shall be returned when

    the block mode is exited.

    NOTE:

    Commands following +CESP in the AT command line must not be processed by the TA.

    Implementation

    Ma'
  sentences:
  - 'SGSN

    To support NBIFOM, the SGSN needs to be capable to:


    ETSI

    ETSI TS 123 161 V14.0.0 (2017-05)'
  - 'Message Service Failure Result Code +CMS ERROR

    Final result code +CMS ERROR: <err> indicates an error related to mobile equipment
    or network. The operation is

    similar to ERROR final result code. None of the following commands in the same
    command line is executed. Neither

    ERROR nor OK final result code shall be returned. ERROR is returned normally when
    error is related to syntax or invalid

    parameters.

    Defined Values

    <err> values used by common messaging commands:'
  - 'C

    C

    -

    -

    P

    Service Priority Level'
- source_sentence: 'Definition

    Cell synchronization accuracy is defined as the maximum deviation in frame start
    times between any pair of cells on the

    same frequency that have overlapping coverage areas.'
  sentences:
  - 'Minimum requirements

    The cell synchronization accuracy shall be better than or equal to 3μs.'
  - "Subsequent Inter-MSC Handover to third MSC\nWhen a Mobile Station is being handed\
    \ over to a third MSC, the procedure (described in GSM 03.09)\ndoes require one\
    \ specific interworking case in MSC-A (figure 20) between E-Interface from MSC-B\
    \ and E-\nInterface from MSC-B' other than the combination of the ones described\
    \ in the chapter 4.5.1 and 4.5.2.\n%66\x10$\x03\x03\x03\x03\x03\x0306&\x10%\x03\
    \x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10$\x03\
    \x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10%\n_\x03\x03\x03\x03\x03\x03\
    \x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\
    \x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\
    \x03\x03\x03\x03_\n_+$1'29(5\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\
    \x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03"
  - 'DL Total PRB Usage

    a) This measurement provides the total usage (in percentage) of physical resource
    blocks (PRBs) on the downlink

    for any purpose.

    b) SI

    c) This measurement is obtained as:

    



    





    ='
- source_sentence: Carrier aggregation measurement accuracy
  sentences:
  - 'PUCCH / PUSCH / SRS time mask

    The PUCCH/PUSCH/SRS time mask defines the observation period between sounding
    reference symbol (SRS) and an

    adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

    There are no additional requirements on UE transmit power beyond that which is
    required in subclause 6.2.2 and

    subclause 6.6.2.3


    ETSI

    ETSI TS 136 101 V9.16.0 (2013-07)'
  - 'Reference Signal Time Difference (RSTD) Measurement Accuracy

    Requirements for Carrier Aggregation

    A.8

    UE Measurements Procedures

    A.9

    Measurement Performance Requirements

    NOTE:

    Only requirements and test cases in this table defined for inter-band carrier
    aggregation shall apply.



    ETSI

    ETSI TS 136 307 V10.17.0 (2016-01)'
  - 'Operator control

    Three general architectures are candidates to offer energy savings functionalities:

    Distributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].

    Energy savings in cells can be initiated in several different ways. Some of the
    mechanisms are:

    For NM-centralized architecture

    -

    IRPManager instructs the cells to move to energySaving state (e.g. according to
    a schedule determined by

    network statistics) , configures trigger points (e.g. load threshold crossing)
    when it want'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("lucian-li/my_new_model")
# Run inference
sentences = [
    'Carrier aggregation measurement accuracy',
    'Reference Signal Time Difference (RSTD) Measurement Accuracy\nRequirements for Carrier Aggregation\nA.8\nUE Measurements Procedures\nA.9\nMeasurement Performance Requirements\nNOTE:\nOnly requirements and test cases in this table defined for inter-band carrier aggregation shall apply.\n\n\nETSI\nETSI TS 136 307 V10.17.0 (2016-01)',
    'Operator control\nThree general architectures are candidates to offer energy savings functionalities:\nDistributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].\nEnergy savings in cells can be initiated in several different ways. Some of the mechanisms are:\nFor NM-centralized architecture\n-\nIRPManager instructs the cells to move to energySaving state (e.g. according to a schedule determined by\nnetwork statistics) , configures trigger points (e.g. load threshold crossing) when it want',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 583,058 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 85.73 tokens</li><li>max: 229 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 85.86 tokens</li><li>max: 229 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                   | positive                                                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Triggering Optimization Function (TG_F)<br>This functional bloc supports the following functions: [SO2], [SO3].</code>                                             | <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code>                                     |
  | <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code>                                     | <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> |
  | <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> | <code>NRM IRP Update Function (NRM_UF)<br>This function updates the E-UTRAN and EPC NRM IRP with the optimization modification if needed.</code>                         |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 11
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 11
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0019 | 100   | 0.8198        |
| 0.0038 | 200   | 0.7651        |
| 0.0057 | 300   | 0.6659        |
| 0.0075 | 400   | 0.6404        |
| 0.0094 | 500   | 0.5638        |
| 0.0113 | 600   | 0.5184        |
| 0.0132 | 700   | 0.448         |
| 0.0151 | 800   | 0.4464        |
| 0.0170 | 900   | 0.3461        |
| 0.0189 | 1000  | 0.3731        |
| 0.0208 | 1100  | 0.343         |
| 0.0226 | 1200  | 0.3557        |
| 0.0245 | 1300  | 0.3623        |
| 0.0264 | 1400  | 0.2941        |
| 0.0283 | 1500  | 0.3153        |
| 0.0302 | 1600  | 0.2724        |
| 0.0321 | 1700  | 0.2702        |
| 0.0340 | 1800  | 0.2934        |
| 0.0358 | 1900  | 0.2255        |
| 0.0377 | 2000  | 0.2519        |
| 0.0396 | 2100  | 0.2424        |
| 0.0415 | 2200  | 0.1883        |
| 0.0434 | 2300  | 0.2428        |
| 0.0453 | 2400  | 0.2212        |
| 0.0472 | 2500  | 0.1862        |
| 0.0491 | 2600  | 0.2451        |
| 0.0509 | 2700  | 0.2336        |
| 0.0528 | 2800  | 0.225         |
| 0.0547 | 2900  | 0.2154        |
| 0.0566 | 3000  | 0.1907        |
| 0.0585 | 3100  | 0.2514        |
| 0.0604 | 3200  | 0.2082        |
| 0.0623 | 3300  | 0.2076        |
| 0.0641 | 3400  | 0.1818        |
| 0.0660 | 3500  | 0.1688        |
| 0.0679 | 3600  | 0.2261        |
| 0.0698 | 3700  | 0.2108        |
| 0.0717 | 3800  | 0.1732        |
| 0.0736 | 3900  | 0.1764        |
| 0.0755 | 4000  | 0.1481        |
| 0.0773 | 4100  | 0.1687        |
| 0.0792 | 4200  | 0.1897        |
| 0.0811 | 4300  | 0.1685        |
| 0.0830 | 4400  | 0.1915        |
| 0.0849 | 4500  | 0.2013        |
| 0.0868 | 4600  | 0.1701        |
| 0.0887 | 4700  | 0.2006        |
| 0.0906 | 4800  | 0.2006        |
| 0.0924 | 4900  | 0.1617        |
| 0.0943 | 5000  | 0.1406        |
| 0.0962 | 5100  | 0.1456        |
| 0.0981 | 5200  | 0.1703        |
| 0.1000 | 5300  | 0.1464        |
| 0.1019 | 5400  | 0.1803        |
| 0.1038 | 5500  | 0.1346        |
| 0.1056 | 5600  | 0.134         |
| 0.1075 | 5700  | 0.1567        |
| 0.1094 | 5800  | 0.163         |
| 0.1113 | 5900  | 0.1544        |
| 0.1132 | 6000  | 0.1648        |
| 0.1151 | 6100  | 0.1505        |
| 0.1170 | 6200  | 0.1231        |
| 0.1189 | 6300  | 0.1591        |
| 0.1207 | 6400  | 0.1533        |
| 0.1226 | 6500  | 0.1376        |
| 0.1245 | 6600  | 0.1473        |
| 0.1264 | 6700  | 0.1405        |
| 0.1283 | 6800  | 0.141         |
| 0.1302 | 6900  | 0.1105        |
| 0.1321 | 7000  | 0.1712        |
| 0.1339 | 7100  | 0.1534        |
| 0.1358 | 7200  | 0.1578        |
| 0.1377 | 7300  | 0.1101        |
| 0.1396 | 7400  | 0.128         |
| 0.1415 | 7500  | 0.1679        |
| 0.1434 | 7600  | 0.1592        |
| 0.1453 | 7700  | 0.1383        |
| 0.1472 | 7800  | 0.1274        |
| 0.1490 | 7900  | 0.1616        |
| 0.1509 | 8000  | 0.1617        |
| 0.1528 | 8100  | 0.1361        |
| 0.1547 | 8200  | 0.1268        |
| 0.1566 | 8300  | 0.1286        |
| 0.1585 | 8400  | 0.1253        |
| 0.1604 | 8500  | 0.1157        |
| 0.1622 | 8600  | 0.1499        |
| 0.1641 | 8700  | 0.1398        |
| 0.1660 | 8800  | 0.1188        |
| 0.1679 | 8900  | 0.1103        |
| 0.1698 | 9000  | 0.1217        |
| 0.1717 | 9100  | 0.1144        |
| 0.1736 | 9200  | 0.1203        |
| 0.1755 | 9300  | 0.1074        |
| 0.1773 | 9400  | 0.1145        |
| 0.1792 | 9500  | 0.1035        |
| 0.1811 | 9600  | 0.1406        |
| 0.1830 | 9700  | 0.1465        |
| 0.1849 | 9800  | 0.1169        |
| 0.1868 | 9900  | 0.1115        |
| 0.1887 | 10000 | 0.1207        |
| 0.1905 | 10100 | 0.1191        |
| 0.1924 | 10200 | 0.1099        |
| 0.1943 | 10300 | 0.1309        |
| 0.1962 | 10400 | 0.1092        |
| 0.1981 | 10500 | 0.1075        |
| 0.2000 | 10600 | 0.1174        |
| 0.2019 | 10700 | 0.1103        |
| 0.2038 | 10800 | 0.1077        |
| 0.2056 | 10900 | 0.0844        |
| 0.2075 | 11000 | 0.1093        |
| 0.2094 | 11100 | 0.1428        |
| 0.2113 | 11200 | 0.0928        |
| 0.2132 | 11300 | 0.1039        |
| 0.2151 | 11400 | 0.1436        |
| 0.2170 | 11500 | 0.1197        |
| 0.2188 | 11600 | 0.1249        |
| 0.2207 | 11700 | 0.0856        |
| 0.2226 | 11800 | 0.1126        |
| 0.2245 | 11900 | 0.1028        |
| 0.2264 | 12000 | 0.0988        |
| 0.2283 | 12100 | 0.1031        |
| 0.2302 | 12200 | 0.101         |
| 0.2320 | 12300 | 0.1188        |
| 0.2339 | 12400 | 0.0908        |
| 0.2358 | 12500 | 0.069         |
| 0.2377 | 12600 | 0.1099        |
| 0.2396 | 12700 | 0.1227        |
| 0.2415 | 12800 | 0.0794        |
| 0.2434 | 12900 | 0.0969        |
| 0.2453 | 13000 | 0.0864        |
| 0.2471 | 13100 | 0.1193        |
| 0.2490 | 13200 | 0.0824        |
| 0.2509 | 13300 | 0.12          |
| 0.2528 | 13400 | 0.0928        |
| 0.2547 | 13500 | 0.1126        |
| 0.2566 | 13600 | 0.0912        |
| 0.2585 | 13700 | 0.1126        |
| 0.2603 | 13800 | 0.078         |
| 0.2622 | 13900 | 0.0715        |
| 0.2641 | 14000 | 0.1095        |
| 0.2660 | 14100 | 0.089         |
| 0.2679 | 14200 | 0.0926        |
| 0.2698 | 14300 | 0.086         |
| 0.2717 | 14400 | 0.1115        |
| 0.2736 | 14500 | 0.0996        |
| 0.2754 | 14600 | 0.1014        |
| 0.2773 | 14700 | 0.1033        |
| 0.2792 | 14800 | 0.0732        |
| 0.2811 | 14900 | 0.0994        |
| 0.2830 | 15000 | 0.0872        |
| 0.2849 | 15100 | 0.0923        |
| 0.2868 | 15200 | 0.111         |
| 0.2886 | 15300 | 0.0891        |
| 0.2905 | 15400 | 0.0868        |
| 0.2924 | 15500 | 0.0773        |
| 0.2943 | 15600 | 0.0918        |
| 0.2962 | 15700 | 0.0726        |
| 0.2981 | 15800 | 0.0951        |
| 0.3000 | 15900 | 0.0835        |
| 0.3019 | 16000 | 0.083         |
| 0.3037 | 16100 | 0.095         |
| 0.3056 | 16200 | 0.0722        |
| 0.3075 | 16300 | 0.1061        |
| 0.3094 | 16400 | 0.0902        |
| 0.3113 | 16500 | 0.0978        |
| 0.3132 | 16600 | 0.0983        |
| 0.3151 | 16700 | 0.0808        |
| 0.3169 | 16800 | 0.0758        |
| 0.3188 | 16900 | 0.071         |
| 0.3207 | 17000 | 0.0918        |
| 0.3226 | 17100 | 0.1011        |
| 0.3245 | 17200 | 0.079         |
| 0.3264 | 17300 | 0.0992        |
| 0.3283 | 17400 | 0.1089        |
| 0.3302 | 17500 | 0.0904        |
| 0.3320 | 17600 | 0.0956        |
| 0.3339 | 17700 | 0.0747        |
| 0.3358 | 17800 | 0.0961        |
| 0.3377 | 17900 | 0.0923        |
| 0.3396 | 18000 | 0.1114        |
| 0.3415 | 18100 | 0.0689        |
| 0.3434 | 18200 | 0.1308        |
| 0.3452 | 18300 | 0.0923        |
| 0.3471 | 18400 | 0.0756        |
| 0.3490 | 18500 | 0.0842        |
| 0.3509 | 18600 | 0.0859        |
| 0.3528 | 18700 | 0.0903        |
| 0.3547 | 18800 | 0.084         |
| 0.3566 | 18900 | 0.0923        |
| 0.3584 | 19000 | 0.0848        |
| 0.3603 | 19100 | 0.0812        |
| 0.3622 | 19200 | 0.0872        |
| 0.3641 | 19300 | 0.083         |
| 0.3660 | 19400 | 0.0826        |
| 0.3679 | 19500 | 0.101         |
| 0.3698 | 19600 | 0.0804        |
| 0.3717 | 19700 | 0.0676        |
| 0.3735 | 19800 | 0.0836        |
| 0.3754 | 19900 | 0.0711        |
| 0.3773 | 20000 | 0.0825        |
| 0.3792 | 20100 | 0.0835        |
| 0.3811 | 20200 | 0.0816        |
| 0.3830 | 20300 | 0.0812        |
| 0.3849 | 20400 | 0.0689        |
| 0.3867 | 20500 | 0.0627        |
| 0.3886 | 20600 | 0.0965        |
| 0.3905 | 20700 | 0.0632        |
| 0.3924 | 20800 | 0.0945        |
| 0.3943 | 20900 | 0.0923        |
| 0.3962 | 21000 | 0.0833        |
| 0.3981 | 21100 | 0.0537        |
| 0.4000 | 21200 | 0.0822        |
| 0.4018 | 21300 | 0.0684        |
| 0.4037 | 21400 | 0.0807        |
| 0.4056 | 21500 | 0.0945        |
| 0.4075 | 21600 | 0.0981        |
| 0.4094 | 21700 | 0.0748        |
| 0.4113 | 21800 | 0.0943        |
| 0.4132 | 21900 | 0.0709        |
| 0.4150 | 22000 | 0.0551        |
| 0.4169 | 22100 | 0.0679        |
| 0.4188 | 22200 | 0.0666        |
| 0.4207 | 22300 | 0.0976        |
| 0.4226 | 22400 | 0.0666        |
| 0.4245 | 22500 | 0.0651        |
| 0.4264 | 22600 | 0.0803        |
| 0.4283 | 22700 | 0.068         |
| 0.4301 | 22800 | 0.0541        |
| 0.4320 | 22900 | 0.0487        |
| 0.4339 | 23000 | 0.091         |
| 0.4358 | 23100 | 0.074         |
| 0.4377 | 23200 | 0.0733        |
| 0.4396 | 23300 | 0.0845        |
| 0.4415 | 23400 | 0.0823        |
| 0.4433 | 23500 | 0.0561        |
| 0.4452 | 23600 | 0.0508        |
| 0.4471 | 23700 | 0.074         |
| 0.4490 | 23800 | 0.0683        |
| 0.4509 | 23900 | 0.0797        |
| 0.4528 | 24000 | 0.0561        |
| 0.4547 | 24100 | 0.0744        |
| 0.4566 | 24200 | 0.0638        |
| 0.4584 | 24300 | 0.0633        |
| 0.4603 | 24400 | 0.062         |
| 0.4622 | 24500 | 0.0887        |
| 0.4641 | 24600 | 0.0908        |
| 0.4660 | 24700 | 0.0654        |
| 0.4679 | 24800 | 0.0522        |
| 0.4698 | 24900 | 0.0851        |
| 0.4716 | 25000 | 0.0763        |
| 0.4735 | 25100 | 0.0623        |
| 0.4754 | 25200 | 0.0712        |
| 0.4773 | 25300 | 0.0866        |
| 0.4792 | 25400 | 0.0812        |
| 0.4811 | 25500 | 0.0706        |
| 0.4830 | 25600 | 0.0734        |
| 0.4849 | 25700 | 0.068         |
| 0.4867 | 25800 | 0.111         |
| 0.4886 | 25900 | 0.0627        |
| 0.4905 | 26000 | 0.0459        |
| 0.4924 | 26100 | 0.0794        |
| 0.4943 | 26200 | 0.0547        |
| 0.4962 | 26300 | 0.0779        |
| 0.4981 | 26400 | 0.0609        |
| 0.4999 | 26500 | 0.0785        |
| 0.5018 | 26600 | 0.0722        |
| 0.5037 | 26700 | 0.0585        |
| 0.5056 | 26800 | 0.0572        |
| 0.5075 | 26900 | 0.0636        |
| 0.5094 | 27000 | 0.0642        |
| 0.5113 | 27100 | 0.0606        |
| 0.5131 | 27200 | 0.0725        |
| 0.5150 | 27300 | 0.0664        |
| 0.5169 | 27400 | 0.0933        |
| 0.5188 | 27500 | 0.0486        |
| 0.5207 | 27600 | 0.0514        |
| 0.5226 | 27700 | 0.0779        |
| 0.5245 | 27800 | 0.0614        |
| 0.5264 | 27900 | 0.0646        |
| 0.5282 | 28000 | 0.0606        |
| 0.5301 | 28100 | 0.0453        |
| 0.5320 | 28200 | 0.0749        |
| 0.5339 | 28300 | 0.0695        |
| 0.5358 | 28400 | 0.0897        |
| 0.5377 | 28500 | 0.0612        |
| 0.5396 | 28600 | 0.0542        |
| 0.5414 | 28700 | 0.0504        |
| 0.5433 | 28800 | 0.0539        |
| 0.5452 | 28900 | 0.0584        |
| 0.5471 | 29000 | 0.0552        |
| 0.5490 | 29100 | 0.076         |
| 0.5509 | 29200 | 0.0861        |
| 0.5528 | 29300 | 0.067         |
| 0.5547 | 29400 | 0.0887        |
| 0.5565 | 29500 | 0.059         |
| 0.5584 | 29600 | 0.0484        |
| 0.5603 | 29700 | 0.0703        |
| 0.5622 | 29800 | 0.0802        |
| 0.5641 | 29900 | 0.0805        |
| 0.5660 | 30000 | 0.0737        |
| 0.5679 | 30100 | 0.0518        |
| 0.5697 | 30200 | 0.0517        |
| 0.5716 | 30300 | 0.0806        |
| 0.5735 | 30400 | 0.0586        |
| 0.5754 | 30500 | 0.0491        |
| 0.5773 | 30600 | 0.0591        |
| 0.5792 | 30700 | 0.066         |
| 0.5811 | 30800 | 0.0419        |
| 0.5830 | 30900 | 0.0517        |
| 0.5848 | 31000 | 0.0539        |
| 0.5867 | 31100 | 0.0845        |
| 0.5886 | 31200 | 0.044         |
| 0.5905 | 31300 | 0.0597        |
| 0.5924 | 31400 | 0.0556        |
| 0.5943 | 31500 | 0.0724        |
| 0.5962 | 31600 | 0.0465        |
| 0.5980 | 31700 | 0.0585        |
| 0.5999 | 31800 | 0.0978        |
| 0.6018 | 31900 | 0.0657        |
| 0.6037 | 32000 | 0.0438        |
| 0.6056 | 32100 | 0.0429        |
| 0.6075 | 32200 | 0.0629        |
| 0.6094 | 32300 | 0.0591        |
| 0.6113 | 32400 | 0.0543        |
| 0.6131 | 32500 | 0.0502        |
| 0.6150 | 32600 | 0.0733        |
| 0.6169 | 32700 | 0.0426        |
| 0.6188 | 32800 | 0.0626        |
| 0.6207 | 32900 | 0.0406        |
| 0.6226 | 33000 | 0.0524        |
| 0.6245 | 33100 | 0.0619        |
| 0.6263 | 33200 | 0.0633        |
| 0.6282 | 33300 | 0.0582        |
| 0.6301 | 33400 | 0.0852        |
| 0.6320 | 33500 | 0.0482        |
| 0.6339 | 33600 | 0.0509        |
| 0.6358 | 33700 | 0.0626        |
| 0.6377 | 33800 | 0.0609        |
| 0.6396 | 33900 | 0.0508        |
| 0.6414 | 34000 | 0.0486        |
| 0.6433 | 34100 | 0.0508        |
| 0.6452 | 34200 | 0.0581        |
| 0.6471 | 34300 | 0.0409        |
| 0.6490 | 34400 | 0.0703        |
| 0.6509 | 34500 | 0.0606        |
| 0.6528 | 34600 | 0.0517        |
| 0.6546 | 34700 | 0.0493        |
| 0.6565 | 34800 | 0.0271        |
| 0.6584 | 34900 | 0.0337        |
| 0.6603 | 35000 | 0.0369        |
| 0.6622 | 35100 | 0.0474        |
| 0.6641 | 35200 | 0.0562        |
| 0.6660 | 35300 | 0.0663        |
| 0.6678 | 35400 | 0.0419        |
| 0.6697 | 35500 | 0.0766        |
| 0.6716 | 35600 | 0.0439        |
| 0.6735 | 35700 | 0.0538        |
| 0.6754 | 35800 | 0.0512        |
| 0.6773 | 35900 | 0.0388        |
| 0.6792 | 36000 | 0.0528        |
| 0.6811 | 36100 | 0.0489        |
| 0.6829 | 36200 | 0.0454        |
| 0.6848 | 36300 | 0.0449        |
| 0.6867 | 36400 | 0.055         |
| 0.6886 | 36500 | 0.0344        |
| 0.6905 | 36600 | 0.0485        |
| 0.6924 | 36700 | 0.0496        |
| 0.6943 | 36800 | 0.0705        |
| 0.6961 | 36900 | 0.0617        |
| 0.6980 | 37000 | 0.054         |
| 0.6999 | 37100 | 0.0613        |
| 0.7018 | 37200 | 0.0549        |
| 0.7037 | 37300 | 0.0378        |
| 0.7056 | 37400 | 0.0508        |
| 0.7075 | 37500 | 0.0613        |
| 0.7094 | 37600 | 0.0602        |
| 0.7112 | 37700 | 0.0592        |
| 0.7131 | 37800 | 0.0441        |
| 0.7150 | 37900 | 0.0445        |
| 0.7169 | 38000 | 0.0464        |
| 0.7188 | 38100 | 0.0537        |
| 0.7207 | 38200 | 0.0521        |
| 0.7226 | 38300 | 0.0447        |
| 0.7244 | 38400 | 0.044         |
| 0.7263 | 38500 | 0.0506        |
| 0.7282 | 38600 | 0.043         |
| 0.7301 | 38700 | 0.0441        |
| 0.7320 | 38800 | 0.0444        |
| 0.7339 | 38900 | 0.0416        |
| 0.7358 | 39000 | 0.0556        |
| 0.7377 | 39100 | 0.0829        |
| 0.7395 | 39200 | 0.043         |
| 0.7414 | 39300 | 0.0366        |
| 0.7433 | 39400 | 0.0457        |
| 0.7452 | 39500 | 0.0622        |
| 0.7471 | 39600 | 0.0353        |
| 0.7490 | 39700 | 0.0597        |
| 0.7509 | 39800 | 0.0468        |
| 0.7527 | 39900 | 0.0418        |
| 0.7546 | 40000 | 0.0606        |
| 0.7565 | 40100 | 0.0613        |
| 0.7584 | 40200 | 0.0654        |
| 0.7603 | 40300 | 0.046         |
| 0.7622 | 40400 | 0.034         |
| 0.7641 | 40500 | 0.0378        |
| 0.7660 | 40600 | 0.0461        |
| 0.7678 | 40700 | 0.0404        |
| 0.7697 | 40800 | 0.0583        |
| 0.7716 | 40900 | 0.0636        |
| 0.7735 | 41000 | 0.0537        |
| 0.7754 | 41100 | 0.0336        |
| 0.7773 | 41200 | 0.0315        |
| 0.7792 | 41300 | 0.0536        |
| 0.7810 | 41400 | 0.0532        |
| 0.7829 | 41500 | 0.0553        |
| 0.7848 | 41600 | 0.0458        |
| 0.7867 | 41700 | 0.0372        |
| 0.7886 | 41800 | 0.0346        |
| 0.7905 | 41900 | 0.0419        |
| 0.7924 | 42000 | 0.0461        |
| 0.7942 | 42100 | 0.0517        |
| 0.7961 | 42200 | 0.0574        |
| 0.7980 | 42300 | 0.0411        |
| 0.7999 | 42400 | 0.0389        |
| 0.8018 | 42500 | 0.0578        |
| 0.8037 | 42600 | 0.0637        |
| 0.8056 | 42700 | 0.0434        |
| 0.8075 | 42800 | 0.0776        |
| 0.8093 | 42900 | 0.0644        |
| 0.8112 | 43000 | 0.0537        |
| 0.8131 | 43100 | 0.0519        |
| 0.8150 | 43200 | 0.0241        |
| 0.8169 | 43300 | 0.0295        |
| 0.8188 | 43400 | 0.0618        |
| 0.8207 | 43500 | 0.0275        |
| 0.8225 | 43600 | 0.0605        |
| 0.8244 | 43700 | 0.0414        |
| 0.8263 | 43800 | 0.0446        |
| 0.8282 | 43900 | 0.0449        |
| 0.8301 | 44000 | 0.0558        |
| 0.8320 | 44100 | 0.0336        |
| 0.8339 | 44200 | 0.0555        |
| 0.8358 | 44300 | 0.0399        |
| 0.8376 | 44400 | 0.0319        |
| 0.8395 | 44500 | 0.0331        |
| 0.8414 | 44600 | 0.0415        |
| 0.8433 | 44700 | 0.0424        |
| 0.8452 | 44800 | 0.0287        |
| 0.8471 | 44900 | 0.044         |
| 0.8490 | 45000 | 0.0375        |
| 0.8508 | 45100 | 0.032         |
| 0.8527 | 45200 | 0.0406        |
| 0.8546 | 45300 | 0.0429        |
| 0.8565 | 45400 | 0.0727        |
| 0.8584 | 45500 | 0.05          |
| 0.8603 | 45600 | 0.0436        |
| 0.8622 | 45700 | 0.0401        |
| 0.8641 | 45800 | 0.0312        |
| 0.8659 | 45900 | 0.036         |
| 0.8678 | 46000 | 0.0558        |
| 0.8697 | 46100 | 0.0436        |
| 0.8716 | 46200 | 0.0517        |
| 0.8735 | 46300 | 0.0361        |
| 0.8754 | 46400 | 0.038         |
| 0.8773 | 46500 | 0.0418        |
| 0.8791 | 46600 | 0.0407        |
| 0.8810 | 46700 | 0.0336        |
| 0.8829 | 46800 | 0.0559        |
| 0.8848 | 46900 | 0.0488        |
| 0.8867 | 47000 | 0.0463        |
| 0.8886 | 47100 | 0.0504        |
| 0.8905 | 47200 | 0.0414        |
| 0.8924 | 47300 | 0.0428        |
| 0.8942 | 47400 | 0.0389        |
| 0.8961 | 47500 | 0.0422        |
| 0.8980 | 47600 | 0.0533        |
| 0.8999 | 47700 | 0.0386        |
| 0.9018 | 47800 | 0.0672        |
| 0.9037 | 47900 | 0.0505        |
| 0.9056 | 48000 | 0.0632        |
| 0.9074 | 48100 | 0.0263        |
| 0.9093 | 48200 | 0.0448        |
| 0.9112 | 48300 | 0.0413        |
| 0.9131 | 48400 | 0.0532        |
| 0.9150 | 48500 | 0.0503        |
| 0.9169 | 48600 | 0.0472        |
| 0.9188 | 48700 | 0.0255        |
| 0.9207 | 48800 | 0.035         |
| 0.9225 | 48900 | 0.0353        |
| 0.9244 | 49000 | 0.0407        |
| 0.9263 | 49100 | 0.0154        |
| 0.9282 | 49200 | 0.0535        |
| 0.9301 | 49300 | 0.0435        |
| 0.9320 | 49400 | 0.0461        |
| 0.9339 | 49500 | 0.0288        |
| 0.9357 | 49600 | 0.0366        |
| 0.9376 | 49700 | 0.0411        |
| 0.9395 | 49800 | 0.0605        |
| 0.9414 | 49900 | 0.0551        |
| 0.9433 | 50000 | 0.0297        |
| 0.9452 | 50100 | 0.0388        |
| 0.9471 | 50200 | 0.0402        |
| 0.9489 | 50300 | 0.0321        |
| 0.9508 | 50400 | 0.0538        |
| 0.9527 | 50500 | 0.036         |
| 0.9546 | 50600 | 0.0318        |
| 0.9565 | 50700 | 0.0398        |
| 0.9584 | 50800 | 0.0405        |
| 0.9603 | 50900 | 0.0408        |
| 0.9622 | 51000 | 0.0485        |
| 0.9640 | 51100 | 0.047         |
| 0.9659 | 51200 | 0.0452        |
| 0.9678 | 51300 | 0.0469        |
| 0.9697 | 51400 | 0.0473        |
| 0.9716 | 51500 | 0.039         |
| 0.9735 | 51600 | 0.0579        |
| 0.9754 | 51700 | 0.0332        |
| 0.9772 | 51800 | 0.0322        |
| 0.9791 | 51900 | 0.0324        |
| 0.9810 | 52000 | 0.035         |
| 0.9829 | 52100 | 0.0517        |
| 0.9848 | 52200 | 0.0275        |
| 0.9867 | 52300 | 0.0466        |
| 0.9886 | 52400 | 0.0452        |
| 0.9905 | 52500 | 0.0446        |
| 0.9923 | 52600 | 0.0357        |
| 0.9942 | 52700 | 0.0368        |
| 0.9961 | 52800 | 0.0365        |
| 0.9980 | 52900 | 0.0303        |
| 0.9999 | 53000 | 0.0288        |

</details>

### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->